留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环孔法的辐射成像系统低频模糊效应研究

王东明 尤文豪 杨高照 张成俊 贾清刚 黄展常 陈进川 叶繁 章法强 游海波

王东明, 尤文豪, 杨高照, 等. 基于环孔法的辐射成像系统低频模糊效应研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250211
引用本文: 王东明, 尤文豪, 杨高照, 等. 基于环孔法的辐射成像系统低频模糊效应研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250211
Wang Dongming, You Wenhao, Yang Gaozhao, et al. Experimental study on long-range blur of radiation imaging system by ring-aperture method[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250211
Citation: Wang Dongming, You Wenhao, Yang Gaozhao, et al. Experimental study on long-range blur of radiation imaging system by ring-aperture method[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250211

基于环孔法的辐射成像系统低频模糊效应研究

doi: 10.11884/HPLPB202537.250211
基金项目: 国家自然科学基金项目(52072183、12175206);中子科学与技术全国重点实验室基金项目(NST20240205)
详细信息
    作者简介:

    王东明,xjtuwdm@foxmail.com

    通讯作者:

    尤文豪,1985971446@qq.com

  • 中图分类号: TL816.3

Experimental study on long-range blur of radiation imaging system by ring-aperture method

  • 摘要: 辐射成像技术作为一种重要的诊断手段,被广泛应用于惯性约束聚变、闪光照相等各类科学装置上。实践中发现,成像系统点扩散函数通常存在预期之外的低频成分,导致图像出现低频模糊退化、图像灰度分布与射线注量分布之间呈现复杂的非线性关系,进而干扰源区强度分布或客体密度分布等关键物理量的诊断分析。由于点扩散函数低频成分强度极低,实验测量难度较大,其具体来源及份额目前尚未明确。针对这一难题,提出了基于环孔法的点扩散函数低频成分测量方法,首次获得了辐射成像系统点扩散函数低频成分的直接测量结果,将测量下限扩展至点扩散函数峰下10−6量级。同时,发现了闪烁屏表面状态对低频成分存在显著影响;将闪烁屏的非成像面涂覆黑色吸光材料后,可大幅降低闪烁屏导致的低频模糊。
  • 图  1  环孔法测量过程原理图

    Figure  1.  Experimental setup

    图  2  环孔准直器实物图

    Figure  2.  The ring-aperture

    图  3  不同实验条件下的环孔图像

    Figure  3.  Images of the ring-aperture

    图  4  不同实验条件下的刃边图像

    Figure  4.  Images of the knife-edge

    图  5  PSF低频成分强度分布

    Figure  5.  The low-frequency component of PSF

    图  6  不同实验条件下的ESF和PSF

    Figure  6.  The ESF and PSF

    图  7  闪烁屏中能量沉积分布的模拟结果

    Figure  7.  Simulations of energy deposition in scintillators

    图  8  Geant4模拟模型(仅展示了到达像面的光子径迹)

    Figure  8.  The Geant4 simulation setup

    图  9  不同闪烁屏对应的PSF模拟结果

    Figure  9.  Simulations of PSF

    表  1  不同PSF测量方法的定性比较

    Table  1.   Comparison of different PSF measurement methods

    method formula prior information data processing methods applications experimental conditions
    knife-edge method $ \displaystyle\int_{ - \infty }^{ + \infty } {{H_{PSF}}(x,y)} dy = \dfrac{d}{{dx}}{H_{ESF}}(x) $ PSF should be circularly and symmetrically distributed solving ill posed inverse problems and is sensitive to measurement errors usually used for high-frequency component measurement low source strength requirements, good radiation shielding, high dynamic range recording unit
    point source method $ {H_{PSF}}(x,y) $ —— no need to solve ill posed problems usually used for high-frequency component measurement high source strength, good radiation shielding, high dynamic range recording unit
    ring-aperture method $ {H_{PSF}}(R) = \dfrac{1}{{2\pi }}\displaystyle\int_0^{2\pi } {{H_{PSF}}(R,\theta )} d\theta $ PSF should be circularly and symmetrically distributed no need to solve ill posed problems suitable for low-frequency component measurement, but not for high-frequency component measurement the requirements for source strength, radiation shielding, and dynamic range of recording units are relatively low
    下载: 导出CSV

    表  2  主要部组件

    Table  2.   Main components

    components model identifier specifications function
    scintillator plastic scintillator EJ262 EJ262-1 ϕ124 mm×5 mm,front and back surfaces are polished with roughness Ra=0.2 μm, the side surface is ground image conversion
    EJ262-2 ϕ124 mm×5 mm,front and back surfaces are polished with roughness Ra=0.2 μm, the side surface is ground, black paint is applied to non-optical surfaces
    inorganic scintillator LYSO: Ce LYSO-1 ϕ124 mm×5 mm,front and back surfaces are polished with roughness Ra=20 nm
    LYSO-2 ϕ124 mm×5 mm,front and back surfaces are polished with roughness Ra=20 nm, black paint is applied to non-optical surfaces
    imaging module Integrated optical imaging module —— field of view: ϕ120 mm
    image size: ϕ22 mm
    spatial resolution: 5 lp/mm
    optical imaging and light shielding
    camera Scientific ICCD camera —— pixels:2 048×2 048
    data range:16 bit
    dynamic range:10 000
    spatial resolution:28.5 lp/mm
    image selection, enhancement and recording
    下载: 导出CSV

    表  3  实验配置

    Table  3.   experimental configuration

    source component to be tested collimator purpose
    pulsed X-ray generator Scintillator + lens + camera ring-aperture 1#、2#、3# measure the low-frequency components of PSF excited by X rays
    tungsten sharp edge measure PSF excited by X rays
    tungsten plate Measure the radiation background in the X-ray field
    —— Measure the flat-field image
    pulsed uniform visible light source lens + camera ring mask 1#、2#、3# measure the low-frequency components of the PSF of lens and camera
    —— measure the flat-field image
    下载: 导出CSV

    表  4  PSF在不同距离r处的实测值

    Table  4.   Measured values of PSF at different distances

    source component to be tested HPSF(r), normalized by total intensity
    r=10.0 mm r=20.0 mm r=30.0 mm
    pulsed X-ray generator EJ262-1+lens+camera 7.02E-7 (1±9%) 1.30E-7 (1±16%) 7.72E-8 (1±19%)
    EJ262-2 (blackening)+lens+camera 4.02E-7 (1±21%) 5.46E-8 (1±36%) 2.90E-8 (1±22%)
    LYSO-1+ lens+camera 3.57E-7 (1±8%) 5.79E-8 (1±16%) 3.00E-8 (1±20%)
    LYSO-2 (blackening)+ lens+camera 2.76E-7 (1±9%) 3.90E-8 (1±15%) 1.77E-8 (1±25%)
    pulsed uniform visible light source lens+camera 1.33E-7 (1±9%) 6.87E-9 (1±23%) 4.94E-9 (1±14%)
    Note: the confidence factor for uncertainty is k=1.
    下载: 导出CSV

    表  5  模拟计算条件

    Table  5.   Simulation conditions

    number research subject front surface back surface side surcafe Geant4 physics list related
    to optical photons
    1 the influence of specular reflection polished polished polished scintillation
    boundary
    absorption
    2 the influence of diffuse reflection ground ground ground
    3 the influence of lateral dispersion ground ground ground+ black paint
    4 the influence of diffuse reflection occurring on the side ground+ black paint ground ground+ black paint
    5 the influence of internal scattering polished polished ground+ black paint scintillation
    boundary
    absorption
    a custom scattering process
    polished+ black paint polished ground+ black paint
    下载: 导出CSV
  • [1] Merrill F E, Bower D, Buckles R, et al. The neutron imaging diagnostic at NIF (invited)[J]. Review of Scientific Instruments, 2012, 83: 10D317. doi: 10.1063/1.4739242
    [2] Volegov P L, Danly C R, Fittinghoff D N, et al. Three-dimensional reconstruction of neutron, Gamma-ray, and X-ray sources using spherical harmonic decomposition[J]. Journal of Applied Physics, 2017, 122: 175901. doi: 10.1063/1.4986652
    [3] Birge N W, Geppert-Kleinrath V, Danly C R, et al. Fast neutron imaging and tomography at NIF[R]. New Mexico: Los Alamos, 2022.
    [4] 余波, 苏明, 黄天晅, 等. 基于神光Ⅲ主机装置的中子半影锥成像系统设计[J]. 强激光与粒子束, 2013, 25(10): 2604-2610 doi: 10.3788/HPLPB20132510.2604

    Yu Bo, Su Ming, Huang Tianxuan, et al. Design of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610 doi: 10.3788/HPLPB20132510.2604
    [5] 李忠良, 张栩彬, 严明飞, 等. 一种环孔编码成像空间移变评估方法[J]. 现代应用物理, 2025, 16: 020204

    Li Zhongliang, Zhang Xubin, Yan Mingfei, et al. A spatial shift-variant evaluation method for coded ring-aperture imaging[J]. Modern Applied Physics, 2025, 16: 020204
    [6] Fittinghoff D N, Bower D E, Hollaway J R, et al. One-dimensional neutron imager for the Sandia Z facility[J]. Review of Scientific Instruments, 2008, 79: 10E530. doi: 10.1063/1.2988819
    [7] Ricketts S A, Mangan M A, Volegov P, et al. Neutron source reconstruction using a generalized expectation–maximization algorithm on one-dimensional neutron images from the Z facility[J]. Review of Scientific Instruments, 2024, 95: 033501. doi: 10.1063/5.0176152
    [8] 邱孟通, 吕敏, 王奎禄, 等. Z-pinch X射线时间分辨多幅图像诊断系统[J]. 强激光与粒子束, 2003, 15(1): 101-104

    Qiu Mengtong, Lv Min, Wang Kuilu, et al. Time resolved X-ray image diagnostic system for Z-pinch[J]. High Power Laser and Particle Beams, 2003, 15(1): 101-104
    [9] 杨建伦, 李正宏, 徐荣昆, 等. Z-pinch内爆等离子体时空分辨诊断技术[J]. 强激光与粒子束, 2007, 19(2): 234-240

    Yang Jianlun, Li Zhenghong, Xu Rongkun, et al. Time-space-resolved diagnostic technique for Z-pinch plasma investigation[J]. High Power Laser and Particle Beams, 2007, 19(2): 234-240
    [10] 温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012

    Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M]. Beijing: National Defense Industry Press, 2012
    [11] Ekdahl C, Abeyta E O, Caudill L, et al. First beam at DARHT-II[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003: 558-562.
    [12] Zepeda-Alarcon E, Clayton J H, Haines T J, et al. Advancing radiographic capabilities for future Cygnus experiments[R]. Las Vegas: Nevada National Security Site/Mission Support and Test Services LLC, 2022.
    [13] 刘军, 张绚, 刘进, 等. 高能闪光照相中网栅相机的性能分析[J]. 强激光与粒子束, 2016, 28: 024003 doi: 10.11884/HPLPB201628.024003

    Liu Jun, Zhang Xuan, Liu Jin, et al. Performance analysis of anti-scatter grid camera in high energy flash radiography[J]. High Power Laser and Particle Beams, 2016, 28: 024003 doi: 10.11884/HPLPB201628.024003
    [14] 徐畅, 董鹏举, 仵可, 等. X射线荧光测量光敏炸药面密度的数值模拟[J]. 现代应用物理, 2025, 16: 020205

    Xu Chang, Dong Pengju, Wu Ke, et al. Numerical simulation of areal density measurement of light-initiated high explosive based on X-ray fluorescence[J]. Modern Applied Physics, 2025, 16: 020205
    [15] Wallace M S, Neilsen A, Dutra E C. High-fidelity dynamic neutron imaging and radiography for subcritical experiments and other applications[R]. Las Vega: Nevada National Security Site/Mission Support and Test Services LLC, 2022.
    [16] 张翱, 孙世峰, 张翔铭, 等. 双端读出提高快中子探测器时间分辨率方法的研究[J]. 现代应用物理, 2024, 15: 050201

    Zhang Ao, Sun Shifeng, Zhang Xiangming, et al. Temporal resolution optimization of fast neutron detector using dual-ended readout method[J]. Modern Applied Physics, 2024, 15: 050201
    [17] Smalley D, Baker S, Phillips D, et al. Scintillator evaluations: long-range blur[R]. Washington: Nevada National Site/National Security Technologies, LLC, 2016.
    [18] Smalley D, Baker S, Baldonado B, et al. Image restoration of high-energy X-ray radiography with a scintillator blur model[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 968: 163910. doi: 10.1016/j.nima.2020.163910
    [19] Wilke M D, Batha S H, Bradley P A, et al. The national ignition facility neutron imaging system[J]. Review of Scientific Instruments, 2008, 79: 10E529. doi: 10.1063/1.2987984
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-14
  • 修回日期:  2025-09-01
  • 录用日期:  2025-09-01
  • 网络出版日期:  2025-09-10

目录

    /

    返回文章
    返回