留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子衍射技术在半导体材料与器件研究中的应用

王宇婷 陈梦奇 巨新

王宇婷, 陈梦奇, 巨新. 中子衍射技术在半导体材料与器件研究中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250212
引用本文: 王宇婷, 陈梦奇, 巨新. 中子衍射技术在半导体材料与器件研究中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250212
Wang Yuting, Chen Mengqi, Ju Xin. Applications of neutron diffraction in semiconductor materials and devices research[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250212
Citation: Wang Yuting, Chen Mengqi, Ju Xin. Applications of neutron diffraction in semiconductor materials and devices research[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250212

中子衍射技术在半导体材料与器件研究中的应用

doi: 10.11884/HPLPB202537.250212
基金项目: 国家自然科学基金项目(62201031);北京科技大学青年教师跨学科研究项目(中央高校基本科研业务费专项资金项目)(FRF-IDRY-GD24-002)
详细信息
    作者简介:

    王宇婷,yutingwang@ustb.edu.cn

    通讯作者:

    巨 新,jux@ustb.edu.cn

  • 中图分类号: O571.53

Applications of neutron diffraction in semiconductor materials and devices research

  • 摘要: 中子衍射技术凭借其穿透能力、轻元素敏感性和动态探测优势,成为半导体材料研究的重要表征手段。该技术通过分析衍射峰特征,揭示材料的晶格畸变、应变分布和缺陷演化规律,为理解材料性能提供原子尺度依据。它能定量分析位错密度和阳离子占位等缺陷,并研究磁有序结构和自旋相互作用机制,支撑新型电子器件开发。其原位测试能力可实时观测相变过程中的缺陷重组动态,揭示外场作用下的结构响应机制,尤其在极端环境材料研究中克服了传统方法的局限。当前研究重点转向建立微观结构与宏观性能的关联模型,发展原位动态测试方法以精准预测材料行为。随着大型科学装置的升级,该技术将在半导体材料的基础研究和工程应用中发挥更大作用,特别是在苛刻环境材料开发领域前景广阔。未来发展方向将聚焦多尺度表征能力提升和原位实验方法创新,为半导体材料科学进步提供有力支撑。
  • 图  1  在室温和453 K下进行压缩测试前后的轴向和径向衍射图谱[11]

    Figure  1.  The axial and radial diffraction patterns before and after compression tests at room temperature and 453 K respectively[11]

    图  2  体相Ag2S在室温和453 K下沿轴向变形时的纹理演变(标尺经过归一化处理,但在不同的晶体结构中有所不同[11])

    Figure  2.  Texture evolution of bulk Ag2S during axial deformation at room temperature and 453 K (The scale bars are normalized but vary across different crystal structures[11])

    图  3  Mn2-xFexO3样品的室温中子衍射图及Rietveld精修得到的晶体结构[23]

    Figure  3.  Room-temperature neutron diffraction patterns of Mn2-xFexO3 samples and crystal structure obtained from Rietveld refinement[23]

    图  4  沿[001]晶轴方向施加磁场H的条件下,与铁磁相(上图)、AF I相及AF II相(下图)波矢相关的磁衍射峰强度,测量温度范围为1.5~1.8 K。插图显示了零场条件下(-$ \dfrac{1}{2} $,$ \dfrac{1}{2} $,$ \dfrac{1}{2} $)峰强度随温度的变化[24]

    Figure  4.  Under an applied magnetic field H along the [001] crystallographic axis, the intensities of magnetic diffraction peaks associated with the wave vectors of the ferromagnetic phase (upper panel), AF I phase and AF II phase (lower panel) were measured in the temperature range of 1.5~1.8 K. The inset shows the temperature dependence of the (−1/2,1/2,1/2) peak intensity under zero-field conditions[24]

  • [1] Woracek R, Santisteban J, Fedrigo A, et al. Diffraction in neutron imaging—A review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 141-158.
    [2] 林皓, 李建, 杨钊龙, 等. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030 doi: 10.11900/0412.1961.2024.00061

    Lin Hao, Li Jian, Yang Zhaolong, et al. Recent progress in stress analysis technology and application of neutron diffraction[J]. Acta Metallurgica Sinica, 2024, 60(8): 1017-1030 doi: 10.11900/0412.1961.2024.00061
    [3] 郑海彪, 康乐, 陈洁, 等. 多场耦合原位拉伸中子衍射实验装置综述[J]. 强激光与粒子束, 2024, 36: 106002 doi: 10.11884/HPLPB202436.240207

    Zheng Haibiao, Kang Le, Chen Jie, et al. A review of multi-field coupled in-situ stretching neutron diffraction experimental devices[J]. High Power Laser and Particle Beams, 2024, 36: 106002 doi: 10.11884/HPLPB202436.240207
    [4] 王立鹏, 孔令体, 姜夺玉, 等. 基于经典分子动力学模拟的热中子散射数据产生方法[J]. 现代应用物理, 2025, 16: 020203 doi: 10.12061/j.issn.2095-6223.202407039

    Wang Lipeng, Kong Lingti, Jiang Duoyu, et al. Thermal neutron scattering data generation method based on classical molecular dynamics simulations[J]. Modern Applied Physics, 2025, 16: 020203 doi: 10.12061/j.issn.2095-6223.202407039
    [5] Roehrens D, Brendt J, Samuelis D, et al. On the ammonolysis of Ga2O3: an XRD, neutron diffraction and XAS investigation of the oxygen-rich part of the system Ga2O3–GaN[J]. Journal of Solid State Chemistry, 2010, 183(3): 532-541. doi: 10.1016/j.jssc.2009.12.024
    [6] Suehiro T, Tansho M, Hagihala M, et al. Quaternary nitride system (1−x)ZnGeN2−2xGaN (x = 1/3): disordered wurtzite structure revealed by time-of-flight neutron powder diffraction[J]. Applied Physics Express, 2020, 13: 115503. doi: 10.35848/1882-0786/abc1cb
    [7] Dong Liran, Zhang Jie, Li Yizhuang, et al. Borrowed dislocations for ductility in ceramics[J]. Science, 2024, 385(6707): 422-427. doi: 10.1126/science.adp0559
    [8] Dhanalakshmi Veeraraj M R, Qu Di, Zhao Shuai, et al. Diffractive lenses for neutron techniques[J]. Scientific Reports, 2025, 15: 8408. doi: 10.1038/s41598-025-92329-6
    [9] Martel P, Rogers D, Stephens A E. Neutron diffraction as a rapid screening method for semiconductor wafers[J]. Applied Physics Letters, 1987, 51(22): 1795-1797. doi: 10.1063/1.98525
    [10] 谭志新, 敬罕涛, 樊瑞睿, 等. 中国散裂中子源伴生质子辐照实验平台及其技术参数的确定[J]. 现代应用物理, 2024, 15: 020401 doi: 10.12061/j.issn.2095-6223.2024.020401

    Tan Zhixin, Jing Hantao, Fan Ruirui, et al. Associated protons experimental platform of China spallation neutron source and determination of its technical parameters[J]. Modern Applied Physics, 2024, 15: 020401 doi: 10.12061/j.issn.2095-6223.2024.020401
    [11] Wang Yanxu, Gong Wu, Kawasaki T, et al. In situ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag2S[J]. Applied Physics Letters, 2023, 123: 011903. doi: 10.1063/5.0158607
    [12] Bokuchava G D. Materials microstructure characterization using high resolution time-of-flight neutron diffraction[J]. Romanian Journal of Physics, 2016, 61(5/6): 903-925.
    [13] Son B S, Kim S J, Lee B W, et al. Mössbauer spectroscopy and neutron diffraction studies of the ferrimagnetic semiconductor on Ga-substituted FeGaxCr2−xS4[J]. Journal of Applied Physics, 2005, 97: 10D322. doi: 10.1063/1.1854051
    [14] Wang Zhenyu, Breternitz J, Schorr S. Cation disorder in zinc-group IV- nitride and oxide nitride semiconductor materials revealed through neutron diffraction[J]. Acta Crystallographica Section A: Foundations and Advances, 2021, A77: C1077.
    [15] Hanada T, Izumi F, Nakamura Y, et al. Neutron and electron diffraction studies of ZnGa2Se4[J]. Physica B: Condensed Matter, 1997, 241/243: 373-375.
    [16] Rhyne J J, Lin J, Furdyna J K, et al. Anomalous antiferromagnetic coupling in [ZnTe¦MnTe] superlattices[J]. Journal of Magnetism and Magnetic Materials, 1998, 177/181: 1195-1196.
    [17] Vennix C W H M, Frikkee E, Swagten H J M, et al. Neutron diffraction on the diluted magnetic semiconductor Sn1−xMnxTe[J]. Journal of Applied Physics, 1991, 69(8): 6025-6027. doi: 10.1063/1.347805
    [18] Giebultowicz T M, Kepa H, Blinowski J, et al. Neutron diffraction and reflectivity studies of interlayer correlations in magnetic semiconductor superlattices[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10(1/3): 411-418.
    [19] Goldman K I, Springholz G, Kepa H, et al. Interlayer correlations in antiferromagnetic semiconductor superlattices EuTe/PbTe[J]. Physica B: Condensed Matter, 1997, 241/243: 710-713.
    [20] Kȩpa H, Kutner-Pielaszek J, Twardowski A, et al. Interlayer correlations in ferromagnetic semiconductor superlattices EuS/PbS[J]. Journal of Magnetism and Magnetic Materials, 2001, 226/230: 1795-1797.
    [21] Dolling G, Holden T M, Sears V F, et al. Neutron diffraction studies of diluted magnetic semiconductors (invited)[J]. Journal of Applied Physics, 1982, 53(11): 7644-7648. doi: 10.1063/1.330174
    [22] Messenger G C. A summary review of displacement damage from high energy radiation in silicon semiconductors and semiconductor devices[J]. IEEE Transactions on Nuclear Science, 1992, 39(3): 468-473. doi: 10.1109/23.277547
    [23] Nikam R, Kurawle N, Borole S, et al. Neutron diffraction studies of Fe-substituted Mn2O3[J]. Indian Journal of Physics, 2023, 97(9): 2721-2725. doi: 10.1007/s12648-023-02621-2
    [24] Mignot J M, Goncharenko I N, Matsumura T, et al. Magnetic phase diagram of the mixed-valence semiconductor TmSe under multi-extreme (P, H, T) conditions[J]. Physica B: Condensed Matter, 2005, 359/361: 105-107.
    [25] Giebultowicz T M, Rhyne J J, Furdyna J K, et al. Neutron diffraction study of the wurtzite-structure dilute magnetic semiconductor Zn0.45Mn0.55Se[J]. Journal of Applied Physics, 1987, 61(8): 3540-3542. doi: 10.1063/1.338717
    [26] 熊振鹏. 宽禁带半导体GaN的辐照损伤机理研究[D]. 北京: 华北电力大学(北京), 2023

    Xiong Zhenpeng. Research on radiation damage mechanism of wide band gap semiconductor GaN[D]. Beijing: North China Electric Power University (Beijing), 2023
    [27] 周炜翔, 曹荣幸, 胡迪科, 等. 增强型Cascode结构GaN HEMT器件中子辐照效应研究[J]. 航天器环境工程, 2024, 41(5): 617-624 doi: 10.12126/see.2024010

    Zhou Weixiang, Cao Rongxing, Hu Dike, et al. Study on neutron irradiation effects of enhancement-mode Cascode-structured GaN HEMT devices[J]. Spacecraft Environment Engineering, 2024, 41(5): 617-624 doi: 10.12126/see.2024010
    [28] Zhou Feng, Wang Tianqi, Liu Chaoming, et al. 800-V irradiation-hardened device technology on GaN-on-SiC power integration platform[C]//Proceedings of 2024 IEEE International Electron Devices Meeting. 2024.
    [29] Berthet F, Guhel Y, Boudart B, et al. Influence of thermal and fast neutron irradiation on dc electrical performances of AlGaN/GaN transistors[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2556-2561. doi: 10.1109/TNS.2012.2209894
    [30] Brudnyi V N, Boiko V M, Kolin N G, et al. Neutron irradiation-induced modification of electrical and structural properties of GaN epifilms grown on Al2O3 (0001) substrate[J]. Semiconductor Science and Technology, 2018, 33: 095011. doi: 10.1088/1361-6641/aad53b
    [31] Butler P A, Uren M J, Lambert B, et al. Neutron irradiation impact on AlGaN/GaN HEMT switching transients[J]. IEEE Transactions on Nuclear Science, 2018, 65(12): 2862-2869. doi: 10.1109/TNS.2018.2880287
    [32] Gaubas E, Čeponis T, Meškauskaite D, et al. Pulsed photo-ionization spectroscopy of traps in as-grown and neutron irradiated ammonothermally synthesized GaN[J]. Scientific Reports, 2019, 9: 1473. doi: 10.1038/s41598-018-38138-6
    [33] Gaubas E, Vaitkus J, Kazlauskas K, et al. Recombination characteristics of the proton and neutron irradiated semi-insulating GaN structures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 583(1): 181-184.
    [34] 谷文萍, 张林, 李清华, 等. 中子辐照对AlGaN/GaN 高电子迁移率晶体管器件电特性的影响[J]. 物理学报, 2014, 63: 047202 doi: 10.7498/aps.63.047202

    Gu Wenping, Zhang Lin, Li Qinghua, et al. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors[J]. Acta Physica Sinica, 2014, 63: 047202 doi: 10.7498/aps.63.047202
    [35] 郝蕊静, 郭红霞, 潘霄宇, 等. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理[J]. 物理学报, 2020, 69: 207301 doi: 10.7498/aps.69.20200714

    Hao Ruijing, Guo Hongxia, Pan Xiaoyu, et al. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor[J]. Acta Physica Sinica, 2020, 69: 207301 doi: 10.7498/aps.69.20200714
    [36] Kim B J, Kim H Y, Kim J, et al. Neutron irradiation on AlGaN/GaN high electron mobility transistors on SiC substrates[J]. Journal of Crystal Growth, 2011, 326(1): 205-207. doi: 10.1016/j.jcrysgro.2011.01.098
    [37] Rajan S, Waltereit P, Poblenz C, et al. Power performance of AlGaN–GaN HEMTs grown on SiC by plasma-assisted MBE[J]. IEEE Electron Device Letters, 2004, 25(5): 247-249. doi: 10.1109/LED.2004.826977
    [38] Kyle E C H, Kaun S W, Burke P G, et al. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy[J]. Journal of Applied Physics, 2014, 115: 193702. doi: 10.1063/1.4874735
    [39] Chen Jin, Puzyrev Y S, Zhang C X, et al. Proton-induced dehydrogenation of defects in AlGaN/GaN HEMTs[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4080-4086. doi: 10.1109/TNS.2013.2281771
    [40] 郝蕊静. GaN HEMT器件无偏置下中子位移损伤效应研究[D]. 湘潭: 湘潭大学, 2020

    Hao Ruijing. The effect of neutron induced displacement damage in unbiased GaN HEMT devices[D]. Xiangtan: Xiangtan University, 2020
    [41] 邱一武, 马艺珂, 张平威, 等. 增强型AlGaN/GaN HEMT器件中子位移损伤效应研究[J]. 固体电子学研究与进展, 2023, 43(4): 359-365,374

    Qiu Yiwu, Ma Yike, Zhang Pingwei, et al. Study of neutron induced displacement damage in enhanced AlGaN/GaN HEMT device[J]. Research & Progress of SSE, 2023, 43(4): 359-365,374
    [42] Lorenz K, Marques J G, Franco N, et al. Defect studies on fast and thermal neutron irradiated GaN[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(12/13): 2780-2783.
    [43] Lv Ling, Li Peixian, Ma Xiaohua, et al. Fast and thermal neutron radiation effects on GaN PIN diodes[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 643-647. doi: 10.1109/TNS.2016.2630061
  • 加载中
图(4)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-09-01
  • 录用日期:  2025-08-29
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回