留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑能量沉积涨落的锁相环电路总剂量辐射效应研究

伏琰军 韦源 左应红 刘利 朱金辉 牛胜利

伏琰军, 韦源, 左应红, 等. 考虑能量沉积涨落的锁相环电路总剂量辐射效应研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250214
引用本文: 伏琰军, 韦源, 左应红, 等. 考虑能量沉积涨落的锁相环电路总剂量辐射效应研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250214
Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. A study of clock generator PLL circuit under total ionizing dose effects in consideration of energy deposition fluctuation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250214
Citation: Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. A study of clock generator PLL circuit under total ionizing dose effects in consideration of energy deposition fluctuation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250214

考虑能量沉积涨落的锁相环电路总剂量辐射效应研究

doi: 10.11884/HPLPB202537.250214
基金项目: 国家重点研发计划项目(2020YFA0709800)
详细信息
    作者简介:

    伏琰军,fuyanjun@nint.ac.cn

    通讯作者:

    左应红,zuoyinghong@nint.ac.cn

  • 中图分类号: TL326

A study of clock generator PLL circuit under total ionizing dose effects in consideration of energy deposition fluctuation

  • 摘要: 考虑晶体管能量沉积涨落,采用蒙卡抽样方法随机修改晶体管SPICE网表敏感参数,等效开展典型0.18 μm工艺锁相环电路(PLL)总剂量辐射效应研究,给出0~200 krad (SiO2)不同总剂量环境参数下锁相环电路的输出频率f、相位差δ和压控电压Vco_in的变化,并初步对PLL总剂量辐射效应敏感模块进行了甄别。研究结果表明,在不考虑晶体管能量沉积涨落情形下,总剂量辐射效应会导致PLL电路的δf发生不同程度的波动,但最终可通过环路反馈机制恢复正常,保持PLL电路锁相功能;相反,在考虑晶体管能量沉积涨落情形,PLL电路锁相后呈现出非预期频率的响应输出,可能导致通信过程的数据丢失以及处理器功能的扰动,对电路整体行为产生灾难性影响。如随着总剂量的增加,PLL电路输出频率分布离散性增大,在30和200 krad(SiO2)时,f的标准方差分别为83 kHz和217 kHz,相差近3倍。进一步,通过监测PLL电路各个模块的总剂量辐射效应响应,初步发现电荷泵模块对总剂量辐射效应较为敏感。本文相关研究方法、结果可为考量或评估真实条件下的PLL电路总剂量辐射效应研究提供参考,并进一步对PLL电路的抗总剂量辐射效应设计提供建议。
  • 图  1  PLL锁相环电路结构框图

    Figure  1.  Schematic diagram of the typical PLL circuit structure

    图  2  典型PLL电路常态输出结果

    Figure  2.  Simulation results of the typical PLL circuit output under non-irradiated conditions

    图  3  典型PLL电路总剂量辐射效应仿真计算流程

    Figure  3.  Simulation and calculation flow of TID effect of typical PLL circuit

    图  4  NMOS/PMOS器件3维模型构建及验证

    Figure  4.  Construction and verification of 3D model of NMOS/ PMOS devices

    图  5  NMOS/PMOS器件转移特性曲线总剂量辐射效应仿真

    Figure  5.  Simulation of TID effect of transfer characteristic curve on NMOS/ PMOS device

    图  6  典型PLL电路在不同TID下的输出频率、相位差和VCO控制电压的结果

    Figure  6.  Output frequency, phase difference and VCO control voltage results of typical PLL circuit under 100 and 200 krad (SiO2)

    图  7  考虑TID能量沉积涨落情形下典型PLL电路输出fVvco_in仿真结果

    Figure  7.  Simulation results of typical PLL circuit output under different TIDs in consideration of energy deposition fluctuation

    图  8  PLL电路CP模块总剂量辐射效应响应仿真结果

    Figure  8.  Simulation results of CP module of PLL circuit output under different TIDs

  • [1] Kaura V, Blasko V. Operation of a phase locked loop system under distorted utility conditions[J]. IEEE Transactions on Industry Applications, 1997, 33(1): 58-63. doi: 10.1109/28.567077
    [2] Mestice M, Ciarpi G, Rossi D, et al. An integrated charge pump for phase-locked loop applications in harsh environments[J]. Electronics, 2024, 13: 744. doi: 10.3390/electronics13040744
    [3] Maffezzoni P, Levantino S. Analysis of VCO phase noise in charge-pump phase-locked loops[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(10): 2165-2175. doi: 10.1109/TCSI.2012.2185312
    [4] Lee J S, Keel M S, Lim S I, et al. Charge pump with perfect current matching characteristics in phase-locked loops[J]. Electronics Letters, 2000, 36(23): 1907-1908. doi: 10.1049/el:20001358
    [5] 方盛, 秦希, 蒋俊, 等. 一种快速捕获带宽可调的锁相环电路[J]. 固体电子学研究与进展, 2009, 29(4): 556-560,565 doi: 10.3969/j.issn.1000-3819.2009.04.017

    Fang Sheng, Qin Xi, Jiang Jun, et al. A fast acquisition PLL with tunable loop bandwidth[J]. Research & Progress of Solid State Electronics, 2009, 29(4): 556-560,565 doi: 10.3969/j.issn.1000-3819.2009.04.017
    [6] 庞浩, 俎云霄, 王赞基. 一种新型的全数字锁相环[J]. 中国电机工程学报, 2003, 23(2): 37-41,131 doi: 10.3321/j.issn:0258-8013.2003.02.008

    Pang Hao, Zu Yunxiao, Wang Zanji. A new design of all digital phase-locked loop[J]. Proceedings of the CSEE, 2003, 23(2): 37-41,131 doi: 10.3321/j.issn:0258-8013.2003.02.008
    [7] Santos Filho R M, Seixas P F, Cortizo P C, et al. Comparison of three single-phase PLL algorithms for UPS applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8): 2923-2932. doi: 10.1109/TIE.2008.924205
    [8] 沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606

    Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606
    [9] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [10] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [11] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [12] 乔登江. 核爆炸物理概论[M]. 北京: 原子能出版社, 1982

    Qiao Dengjiang. General principles to the physics of nuclear burst[M]. Beijing: Atomic Energy Press, 1982
    [13] 秦军瑞, 陈吉华, 赵振宇, 等. 锁相环电路中压控振荡器的SET响应研究[J]. 计算机工程与科学, 2011, 33(2): 75-79 doi: 10.3969/j.issn.1007-130X.2011.02.015

    Qin Junrui, Chen Jihua, Zhao Zhenyu, et al. Research on single-event transients in voltage-controlled oscillators of phase-locked loops[J]. Computer Engineering and Science, 2011, 33(2): 75-79 doi: 10.3969/j.issn.1007-130X.2011.02.015
    [14] Ahirwar R, Pattanaik M, Srivastava P. Radiation hardened by design-based voltage controlled oscillator for low power phase locked loop application[J]. Journal of Electronic Testing, 2024, 40(2): 171-184. doi: 10.1007/s10836-024-06113-x
    [15] Fu Yanjun, Peng Zhigang, Dong Zhiyong, et al. A study on the timing sensitivity of the transient dose rate effect on complementary metal-oxide-semiconductor image sensor readout circuits[J]. Sensors, 2024, 24: 7659. doi: 10.3390/s24237659
    [16] 伏琰军, 韦源, 左应红, 等. 典型ADC电路中斜坡发生器瞬时剂量率效应时序敏感性分析[J]. 现代应用物理, 2024, 15: 060601

    Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Timing sensitivity of ramp generator of typical ADC circuit radiated by transient dose rate[J]. Modern Applied Physics, 2024, 15: 060601
    [17] 伏琰军, 韦源, 左应红, 等. 典型相关双采样电路瞬时剂量率辐射效应时序敏感性[J]. 现代应用物理, 2025, 16: 020605

    Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Timing sensitivity of the transient dose rate radiation effect on typical correlation double sampling circuit[J]. Modern Applied Physics, 2025, 16: 020605
    [18] Oldham T R, McLean F B. Total ionizing dose effects in MOS oxides and devices[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 483-499. doi: 10.1109/TNS.2003.812927
    [19] Li Dongmei, Wang Zhihua, Huangfu Liying, et al. Study of total ionizing dose radiation effects on enclosed gate transistors in a commercial CMOS technology[J]. Chinese Physics, 2007, 16(12): 3760-3765. doi: 10.1088/1009-1963/16/12/034
    [20] Prinzie J, Christiansen J, Moreira P, et al. Comparison of a 65 nm CMOS ring- and LC-oscillator based PLL in terms of TID and SEU sensitivity[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 245-252. doi: 10.1109/TNS.2016.2616919
    [21] Chen Zhuojun, Ding Ding, Dong Yemin, et al. Study of total-ionizing-dose effects on a single-event-hardened phase-locked loop[J]. IEEE Transactions on Nuclear Science, 2018, 65(4): 997-1004. doi: 10.1109/TNS.2018.2812806
    [22] 李铁虎. 深亚微米和纳米级集成电路的辐照效应及抗辐照加固技术[D]. 西安: 西安电子科技大学, 2018

    Li Tiehu. Radiation effects and hardening techniques of deep submicron and nano-scale integrated circuits[D]. Xi’an: Xidian University, 2018
    [23] 吕荫学, 刘梦新, 罗家俊, 等. 辐照加固的500MHz锁相环设计[J]. 半导体技术, 2011, 36(1): 49-54

    Lü Yinxue, Liu Mengxin, Luo Jiajun, et al. Design of radiaiton hardened 500MHz phase-locked loop[J]. Semiconductor Technology, 2011, 36(1): 49-54
    [24] 叶蓉. 可编程抗辐射锁相环设计[D]. 哈尔滨: 哈尔滨工业大学, 2015

    Ye Rong. Design of programmable radiation-hardend phase-locked-loop[D]. Harbin: Harbin Institute of Technology, 2015
    [25] 答元. MOS器件电离损伤的蒙特卡罗模拟研究[D]. 西安: 西安工业大学, 2011

    Da Yuan. Study of Monte Carlo simulation of the ionization damage of MOS device[D]. Xi'an: Xi'an Technological University, 2011
    [26] 王敬敬. CMOS低相噪锁相环电路的设计与研究[D]. 北京: 北京交通大学, 2024

    Wang Jingjing. Design and research of CMOS low phase noise phase-locked loop circuit[D]. Beijing: Beijing Jiaotong University, 2024
    [27] Kumar P G, Bhatt D. Design and analysis of high speed phase frequency detector with zero dead zone in PLL[J]. IETE Journal of Research, 2025, 71(4): 1190-1198. doi: 10.1080/03772063.2025.2450038
    [28] 李金凤, 郭瑞华, 凌辛旺, 等. 基于55 nm CMOS工艺的小数分频电荷泵锁相环设计[J]. 电子设计工程, 2024, 32(12): 71-75

    Li Jinfeng, Guo Ruihua, Ling Xinwang, et al. Design of fractional frequency division charge pump PLL based on 55 nm CMOS process[J]. Electronic Design Engineering, 2024, 32(12): 71-75
    [29] Li Tongde, Zhao Yuanfu, Wang Liang, et al. Investigation on transient ionizing radiation effects in a 4-Mb SRAM with dual supply voltages[J]. IEEE Transactions on Nuclear Science, 2022, 69(3): 340-348. doi: 10.1109/TNS.2022.3148441
    [30] Kumar M, Ubhi J S, Basra S, et al. Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology[J]. Microelectronics Journal, 2021, 115: 105182. doi: 10.1016/j.mejo.2021.105182
    [31] 伏琰军, 韦源, 左应红, 等. 典型CMOS图像传感器读出电路总剂量辐射效应仿真模拟研究[J]. 现代应用物理, 2025, 16: 030604 doi: 10.12061/j.issn.2095-6223.202409003

    Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Simulation study of total dose radiation effect on readout circuit of typical CMOS image sensor[J]. Modern Applied Physics, 2025, 16: 030604 doi: 10.12061/j.issn.2095-6223.202409003
    [32] 李海松, 王斌, 杨博, 等. 14 nm体硅FinFET工艺标准单元的总剂量效应[J]. 半导体技术, 2025, 50(6): 619-624,647

    Li Haisong, Wang Bin, Yang Bo, et al. Total ionizing dose effect of standard cells for 14 nm bulk silicon FinFET processor[J]. Semiconductor Technology, 2025, 50(6): 619-624,647
    [33] Haran B S, Kumar A, Adam L, et al. 22 nm technology compatible fully functional 0.1 μm2 6T-SRAM cell[C]//2008 IEEE International Electron Devices Meeting. 2008: 1-4.
    [34] Raine M, Gaillardin M, Paillet P, et al. Dispersion of heavy ion deposited energy in nanometric electronic devices: experimental measurements and simulation possibilities[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 365: 636-640. doi: 10.1016/j.nimb.2015.09.087
    [35] Junior Rossetto A C, Wirth G I, Dallasen R V. Performance analysis of a clock generator PLL under TID effects[C]//2014 15th Latin American Test Workshop. 2014: 1-5.
  • 加载中
图(8)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-14
  • 修回日期:  2025-09-09
  • 录用日期:  2025-09-09
  • 网络出版日期:  2025-09-17

目录

    /

    返回文章
    返回