留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线辐照典型材料出射电子特征规律研究

韩立会 朱金辉 王建国 牛胜利 刘利 左应红

韩立会, 朱金辉, 王建国, 等. X射线辐照典型材料出射电子特征规律研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250215
引用本文: 韩立会, 朱金辉, 王建国, 等. X射线辐照典型材料出射电子特征规律研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250215
Han Lihui, Zhu Jinhui, Wang Jianguo, et al. Investigation of emitted electron characteristics from typical materials under X-ray irradiation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250215
Citation: Han Lihui, Zhu Jinhui, Wang Jianguo, et al. Investigation of emitted electron characteristics from typical materials under X-ray irradiation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250215

X射线辐照典型材料出射电子特征规律研究

doi: 10.11884/HPLPB202537.250215
基金项目: 国家重点研发计划资助项目(2020YFA0709800)
详细信息
    作者简介:

    韩立会,hanlihui@nint.ac.cn

    通讯作者:

    王建国,wangjianguo@nint.ac.cn

  • 中图分类号: O571.33

Investigation of emitted electron characteristics from typical materials under X-ray irradiation

  • 摘要: 电子发射参数是研究X射线辐照下腔体结构产生系统电磁脉冲(SGEMP)效应的关键电流源项。采用基于浓缩历史方法与单事件方法建立的电子输运模块开展光子-电子耦合输运蒙特卡罗模拟计算。通过分析光子、电子与物质相互作用特点,系统分析了不同能量X射线正入射辐照典型材料时产生的背向及前向电子发射特性,包括电子能谱、角分布规律。建立基于光子平均自由程的背向电子产额计算方法,提出了饱和产额计算公式与饱和厚度;针对前向电子产额,结合光子衰减规律和电子最大射程建立了计算模型,并引入累积因子进行修正,进一步提升了准确性。在SGEMP关注的X射线能量范围及典型材料厚度范围内进行验证,结果显示,与蒙特卡罗直接模拟相比,计算公式给出的背向、前向电子产额相对偏差在10%以内,研究结果为SGEMP的电子产额计算提供了一种高效便捷的求解方法。
  • 图  1  计算模型示意图

    Figure  1.  Schematic diagram of the computational model

    图  2  光子与铝原子的相互作用参数

    Figure  2.  Photon interaction parameters with aluminum atoms

    图  3  电子在铝介质中的射程图

    Figure  3.  Electron range in aluminum medium

    图  4  平板内部对表面出射电子有贡献的区域示意图

    Figure  4.  Schematic of regions contributing to surface-emitted electrons within the plate

    图  5  背向出射光子、电子能谱

    Figure  5.  Energy distributions of backward-emitted photons and electrons

    图  6  背向出射电子角分布

    Figure  6.  Angular Distribution of Backward-Emitted Electrons

    图  7  不同能量X射线入射背向出射电子的饱和产额

    Figure  7.  Saturation yields of backward-emitted electrons under X-rays of varying energies

    图  8  前向出射电子特征

    Figure  8.  Characteristics of forward-emitted electrons

    图  9  前向最大电子产额

    Figure  9.  Maximum forward electron yield

    图  10  累积因子修正函数曲线

    Figure  10.  Cumulative factor correction function curve

    表  1  不同能量X射线入射不同厚度铝板背向出射电子产额

    Table  1.   Backward electron yields for aluminum plates of varying thicknesses under different X-ray energies

    E/keVrmax/cm$ \lambda ({\text{cm}}) $$ {Y_{{r_{\max }}}} $$ {Y_{0.25\lambda }} $$ {Y_{0.5\lambda }} $$ {Y_{0.75\lambda }} $$ {Y_\lambda } $$ {Y_{3\lambda }} $$ {Y_{5\lambda }} $
    12.93×10−63.13×10−41.33×10−31.33×10−31.33×10−31.33×10−31.33×10−31.33×10−31.33×10−3
    54.05×10−51.92×10−32.45×10−32.46×10−32.46×10−32.46×10−32.46×10−32.46×10−32.46×10−3
    101.31×10−41.41×10−21.23×10−31.24×10−31.24×10−31.24×10−31.24×10−31.24×10−31.24×10−3
    204.34×10−41.08×10−14.12×10−44.18×10−44.21×10−44.22×10−44.23×10−44.24×10−44.24×10−4
    401.44×10−36.52×10−11.50×10−41.67×10−41.73×10−41.77×10−41.78×10−41.80×10−41.80×10−4
    602.91×10−31.337.42×10−59.43×10−51.04×10−41.10×10−41.12×10−41.16×10−41.16×10−4
    804.76×10−31.844.53×10−56.58×10−57.52×10−57.98×10−58.25×10−58.62×10−58.65×10−5
    1006.94×10−32.173.13×10−55.33×10−56.43×10−57.08×10−57.40×10−57.88×10−57.88×10−5
    下载: 导出CSV

    表  2  给定能量、平板厚度条件下背向产额的蒙卡模拟值与计算公式对比

    Table  2.   Comparison between Monte Carlo simulations and analytical formula predictions for backward electron yields at given energies and plate thicknesses

    E/keVYMCYEqRE/%YMCYEqRE/%YMCYEqRE/%
    t=0.075mmt=0.5mmt=2.5mm
    0.52.99×10−33.07×10−32.782.99×10−33.07×10−32.782.99×10−33.07×10−3−2.71
    33.78×10−33.74×10−3−1.063.78×10−33.74×10−3−1.063.78×10−33.74×10−3−1.06
    62.09×10−32.13×10−31.732.09×10−32.13×10−31.722.09×10−32.13×10−31.72
    91.38×10−31.36×10−3−1.441.38×10−31.36×10−3−1.511.38×10−31.36×10−3−1.51
    156.24×10−46.58×10−45.356.29×10−46.58×10−44.646.29×10−46.58×10−44.61
    351.84×10−41.95×10−46.031.90×10−42.01×10−45.332.02×10−42.15×10−45.98
    558.86×10−58.59×10−5−3.079.39×10−58.95×10−5−4.721.07×10−41.02×10−4−4.61
    755.17×10−55.05×10−5−2.385.50×10−55.31×10−5−3.376.61×10−56.36×10−5−3.80
    953.47×10−53.83×10−510.113.75×10−54.04×10−57.674.66×10−54.91×10−55.57
    下载: 导出CSV

    表  3  40keV光子入射不同厚度平板三种方式得到前向出射电子产额结果对比

    Table  3.   Comparison of forward electron yields obtained via three methods for 40 keV photons incident on plates of varying thicknesses

    t/mm YMC YEq6 RE/% YEq8 RE/%
    0.10 3.01×10−4 3.03×10−4 0.96 3.04×10−4 1.10
    0.25 2.98×10−4 2.96×10−4 −0.55 2.99×10−4 0.37
    0.50 2.92×10−4 2.85×10−4 −2.18 2.92×10−4 0.01
    0.75 2.85×10−4 2.75×10−4 −3.51 2.84×10−4 −0.11
    1.00 2.77×10−4 2.64×10−4 −4.73 2.77×10−4 −0.16
    2.00 2.49×10−4 2.27×10−4 −8.95 2.49×10−4 −0.14
    3.00 2.22×10−4 1.94×10−4 −12.41 2.22×10−4 0.08
    4.00 1.97×10−4 1.67×10−4 −15.57 1.98×10−4 0.11
    5.00 1.75×10−4 1.43×10−4 −18.44 1.75×10−4 0.01
    10.00 9.30×10−5 6.64×10−5 −28.63 9.26×10−5 −0.44
    下载: 导出CSV

    表  4  给定能量、平板厚度条件下前向电子产额的蒙卡模拟值与计算公式对比

    Table  4.   Comparison between Monte Carlo simulations and analytical formula predictions for forward electron yields at given energies and plate thicknesses

    E/keVYMC(e-)YeqRE/%YMCYeqRE/%YMCYeqRE/%
    t=0.075 mmt=0.5 mmt=2.5 mm
    304.42×10−1002.40×10−4900
    61.98×10−41.99×10−40.8603.66×10−1003.65×10−37
    96.79×10−46.36×10−4−6.418.80×10−68.05×10−6−8.5209.37×10−15
    158.18×10−47.40×10−4−9.563.40×10−43.04×10−4−10.794.88×10−64.53×10−6−7.21
    353.57×10−43.58×10−40.323.43×10−43.32×10−4−3.192.45×10−42.30×10−4−6.08
    552.12×10−42.08×10−4−1.822.09×10−42.05×10−4−2.021.94×10−41.89×10−4−2.64
    751.56×10−41.58×10−41.201.58×10−41.58×10−4−0.021.54×10−41.53×10−4−0.25
    951.40×10−41.42×10−41.211.41×10−41.42×10−40.991.37×10−41.41×10−43.07
    下载: 导出CSV
  • [1] 孟萃. 瞬态电离辐射激励强电磁脉冲[M]. 北京: 清华大学出版社, 2022: 85

    Meng Cui. Transient ionizing radiation induced intense electromagnetic pulse[M]. Beijing: Tsinghua University Press, 2022: 85
    [2] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [3] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [4] 陈剑楠, 陶应龙, 牛胜利. X射线辐照圆柱腔体SGEMP电子发射参数的计算[J]. 现代应用物理, 2020, 11: 010501 doi: 10.12061/j.issn.2095-6223.2020.010501

    Chen Jiannan, Tao Yinglong, Niu Shengli. Calculation of electron emission parameter of SGEMP in cylinder cavity irradiated by X-rays[J]. Modern Applied Physics, 2020, 11: 010501 doi: 10.12061/j.issn.2095-6223.2020.010501
    [5] Dolan K W. X-ray-induced electron emission from metals[J]. Journal of Applied Physics, 1975, 46(6): 2456-2463. doi: 10.1063/1.322229
    [6] Bernstein M J, Paschen K W. Forward and backward photoemission yields from metals at various X-ray angles of incidence[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 111-116. doi: 10.1109/TNS.1973.4327380
    [7] Chadsey W L, Wilson C W, Pine V W. X-ray photoemission calculations[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2345-2350. doi: 10.1109/TNS.1975.4328131
    [8] Dellin T A, MacCallum C J. Photo-Compton currents emitted from a surface[J]. Journal of Applied Physics, 1975, 46(7): 2924-2934. doi: 10.1063/1.322022
    [9] Dellin T A, Huddleston R E, MacCallum C J. Second generation analytical photo-Compton current methods[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2549-2555. doi: 10.1109/TNS.1975.4328166
    [10] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environment[J]. Modern Applied Physics, 2023, 14: 030104
    [11] 张含天, 陈剑楠, 周前红, 等. 系统电磁脉冲建模与数值模拟研究进展[J]. 电波科学学报, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034

    Zhang Hantian, Chen Jiannan, Zhou Qianhong, et al. Progress in modeling and numerical simulation of system generated electromagnetic pulse[J]. Chinese Journal of Radio Science, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034
    [12] 孙会芳, 易涛, 董志伟, 等. 神光装置辐照腔体系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2024, 36: 043024 doi: 10.11884/HPLPB202436.230273

    Sun Huifang, Yi Tao, Dong Zhiwei, et al. Simulation of cavity system generated electromagnetic pulse radiated by SG-facility[J]. High Power Laser and Particle Beams, 2024, 36: 043024 doi: 10.11884/HPLPB202436.230273
    [13] 李进玺, 吴伟, 郭景海, 等. “闪光二号”环境中系统电磁脉冲计算模型的验证[J]. 现代应用物理, 2016, 7: 030503 doi: 10.3969/j.issn.2095-6223.2016.03.005

    Li Jinxi, Wu Wei, Guo Jinghai, et al. Verification of numerical simulation model for SGEMP generated in flash-Ⅱ accelerator environment[J]. Modern Applied Physics, 2016, 7: 030503 doi: 10.3969/j.issn.2095-6223.2016.03.005
    [14] 陈剑楠, 陶应龙, 陈再高, 等. 系统电磁脉冲模拟中的发射电子参数计算[J]. 现代应用物理, 2018, 9: 040501 doi: 10.12061/j.issn.2095-6223.2018.040501

    Chen Jiannan, Tao Yinglong, Chen Zaigao, et al. Calculation of emission electron parameter in simulation of SGEMP[J]. Modern Applied Physics, 2018, 9: 040501 doi: 10.12061/j.issn.2095-6223.2018.040501
    [15] Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
    [16] Bradford J N. X-ray induced electron emission II[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 105-110. doi: 10.1109/TNS.1973.4327379
    [17] Woods A J, Wenaas E P. Photon source SGEMP spectrum evaluations[R]. Sandia National Laboratories, 1978.
    [18] Storm L, Israel H I. Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100[J]. Atomic Data and Nuclear Data Tables, 1970, 7(6): 565-681. doi: 10.1016/S0092-640X(70)80017-1
    [19] Berger M J. Monte Carlo calculation of the penetration and diffusion of fast charged particles[M]//Alder B, Fernbach S, Rotenberg M. Methods in Computational Physics, Vol. 1. New York: Academic Press, 1963: 135.
    [20] Seltzer S M. Cross sections for bremsstrahlung production and electron-impact ionization[M]//Jenkins T M, Nelson W R, Rindi A. Monte Carlo Transport of Electrons and Photons. Boston: Springer, 1988: 81.
    [21] 夏益华. 高等电离辐射防护教程[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 87

    Xia Yihua. Advanced course on ionizing radiation protection[M]. Harbin: Harbin Engineering University Press, 2010: 87
    [22] 乔海亮, 谢海燕, 刘钰. 基于人工神经网络的HEMP-E1环境快速预测模型[J]. 现代应用物理, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011

    Qiao Hailiang, Xie Haiyan, Liu Yu. A fast prediction model for HEMP-E1 environment based on artificial neural network[J]. Modern Applied Physics, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011
    [23] 游检卫, 张嘉男, 刘彻, 等. 智能计算电磁学及其超材料智能设计应用[J]. 现代应用物理, 2025, 16: 011301 doi: 10.12061/j.issn.2095-6223.202412045

    You Jianwei, Zhang Jianan, Liu Che, et al. Intelligent computational electromagnetics and its applications in intelligent design of metamaterials[J]. Modern Applied Physics, 2025, 16: 011301 doi: 10.12061/j.issn.2095-6223.202412045
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-08-21
  • 录用日期:  2025-08-19
  • 网络出版日期:  2025-09-02

目录

    /

    返回文章
    返回