留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工神经网络的高空电磁脉冲环境快速预测

裴明鸿 谢海燕 乔海亮 史雪婷

裴明鸿, 谢海燕, 乔海亮, 等. 基于人工神经网络的高空电磁脉冲环境快速预测[J]. 强激光与粒子束, 2025, 37: 106027. doi: 10.11884/HPLPB202537.250221
引用本文: 裴明鸿, 谢海燕, 乔海亮, 等. 基于人工神经网络的高空电磁脉冲环境快速预测[J]. 强激光与粒子束, 2025, 37: 106027. doi: 10.11884/HPLPB202537.250221
Pei Minghong, Xie Haiyan, Qiao Hailiang, et al. Rapid prediction of high-altitude electromagnetic pulse environment based on artificial neural network[J]. High Power Laser and Particle Beams, 2025, 37: 106027. doi: 10.11884/HPLPB202537.250221
Citation: Pei Minghong, Xie Haiyan, Qiao Hailiang, et al. Rapid prediction of high-altitude electromagnetic pulse environment based on artificial neural network[J]. High Power Laser and Particle Beams, 2025, 37: 106027. doi: 10.11884/HPLPB202537.250221

基于人工神经网络的高空电磁脉冲环境快速预测

doi: 10.11884/HPLPB202537.250221
基金项目: 国家重点研发计划项目(2020YFA0709800)
详细信息
    作者简介:

    裴明鸿,peiminghong@nint.ac.cn

    通讯作者:

    谢海燕,xiehaiyan@nint.ac.cn

  • 中图分类号: TP183;TL91

Rapid prediction of high-altitude electromagnetic pulse environment based on artificial neural network

  • 摘要: 高空电磁脉冲(High-altitude Electromagnetic Pulse, HEMP)幅值高、脉宽宽、覆盖范围大,对现代电子设备和电力网络构成严重威胁。为了实现对HEMP环境的快速预测,提出了一种基于人工神经网络(Artificial Neural Network, ANN)的HEMP快速预测模型,解决了传统数值计算的时效性问题,显著提高场环境计算效率及预测精度。该模型结合Karzas-Latter高频近似模型与世界地磁模型,使用Sigmoid激活函数和均方差损失函数,包含一个输入层、八个隐藏层和一个输出层。实验结果表明,该模型能在短时间内完成HEMP电场峰值的精确预测,极大缩短了计算时间,拓展了适用范围。研究成果可为HEMP风险评估及快速响应提供参考。
  • 图  1  爆炸的简化几何示意图

    Figure  1.  Simplified geometric schematic diagram of explosion

    图  2  世界地磁模型示意图

    Figure  2.  Schematic diagram of world magnetic model

    图  3  神经网络结构示意图

    Figure  3.  Schematic diagram of neural network architecture

    图  4  角度参数对称性特征

    Figure  4.  Angular parameter symmetry

    图  5  所有样本点预测值与数值计算结果散点图

    Figure  5.  Scatter plot of predicted values vs. numerical results for all samples

    图  6  −45°经度−30°纬度100 km高度1000 kt当量结果对比图

    Figure  6.  Comparison of results for −45° (longitude), −30° (latitude), 100 km (altitude), 1000 kt (yield)

    图  7  135°经度−60°纬度100 km高度1000 kt当量结果对比图

    Figure  7.  Comparison of results for 135° (longitude), −60° (latitude), 100 km (altitude), 1000 kt (yield)

    图  8  135°经度−60°纬度500 km高度30000 kt当量结果对比图

    Figure  8.  Comparison of results for 135° (longitude), −60° (latitude), 500 km (altitude), 30000 kt (yield)

    表  1  原始数据量级

    Table  1.   Raw data magnitude

    parameters Qf/kt HOB/km Bm /μT θ/(°) r/km E/(V·m−1)
    minimum 1 30 20 0 0 0
    maximum 30000 500 70 180 2443 81751
    order of magnitude 104 102 101 102 103 104
    下载: 导出CSV
  • [1] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Parameter handbook of high altitude nuclear detonation effect[M]. Beijing: Atomic Energy Press, 2010
    [2] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [3] 谢海燕. 系统级HEMP耦合分析方法研究进展[J]. 现代应用物理, 2023, 14: 020102

    Xie Haiyan. Research progress of system level HEMP coupling analysis methods[J]. Modern Applied Physics, 2023, 14: 020102
    [4] Karzas W J, Latter R. Detection of the electromagnetic radiation from nuclear explosions in space[J]. Physical Review, 1965, 137: B1369. doi: 10.1103/PhysRev.137.B1369
    [5] Friedman A, Cohen B I, Eng C D, et al. EMPulse, a new 3-D simulation code for EMP formation and propagation[J]. Journal of Radiation Effects: Research and Engineering, 2015, 61(18): 175-184.
    [6] 陈剑楠, 张茂钰, 刘利, 等. 结合MCNP的自恰近地面源区电磁脉冲数值模拟方法[J]. 现代应用物理, 2022, 13: 30503

    Chen Jiannan, Zhang Maoyu, Liu Li, et al. Self-consistent numerical simulation method of near ground source region electromagnetic pulse combined with MCNP[J]. Modern Applied Physics, 2022, 13: 30503
    [7] Dong Ning, Xie Yanzhao. On the self-consistent simulation of high-altitude electromagnetic pulse[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2074-2082. doi: 10.1109/TNS.2022.3193586
    [8] 王锦锦, 程引会, 聂鑫, 等. 基于机器学习的高空电磁脉冲环境快速计算方法[J]. 计算机科学, 2023, 50: 220500046

    Wang Jinjin, Cheng Yinhui, Nie Xin, et al. Fast calculation method of high-altitude electromagnetic pulse environment based on machine learning[J]. Computer Science, 2023, 50: 220500046
    [9] 乔海亮, 谢海燕, 刘钰. 基于人工神经网络的HEMP-E1环境快速预测模型[J]. 现代应用物理, 2025, 16: 011318

    Qiao Hailiang, Xie Haiyan, Liu Yu. A fast prediction model for HEMP-E1 environment based on artificial neural network[J]. Modern Applied Physics, 2025, 16: 011318
    [10] Li Ya, Wang Jianguo, Zuo Yinghong, et al. Simulation of high altitude nuclear electromagnetic pulse using a modified model of scattered gamma[J]. IEEE Transactions on Nuclear Science, 2020, 67(12): 2474-2480. doi: 10.1109/TNS.2020.3031320
    [11] 王建国. 核爆炸早中期电磁脉冲产生的数值模拟方法[J]. 电波科学学报, 2024, 39(5): 787-796

    Wang Jianguo. Numerical simulation method of early-time and intermediate-time electromagnetic pulses generated by nuclear explosions[J]. Chinese Journal of Radio Science, 2024, 39(5): 787-796
    [12] Chulliat A, Brown W, Alken P. The US/UK world magnetic model for 2020-2025[R]. National Oceanic and Atmospheric Administration (NOAA), 2020.
    [13] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge: MIT Press, 2016.
    [14] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [15] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [16] 贾怀勤. 应用统计[M]. 北京: 对外经济贸易大学出版社, 2005

    Jia Huaiqin. Applied statistics[M]. Beijing: University of International Business and Economics Press, 2005
    [17] Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1423-1430. doi: 10.1109/TEMC.2022.3179676
    [18] 王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36: 073001

    Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001
    [19] Han Feng, Wang Jianguo, Peng Guoliang, et al. physics-informed multiresolution wavelet neural network method for solving partial differential equations[DB/OL]. arXiv preprint arXiv: 2508.07546, 2025.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 修回日期:  2025-09-16
  • 录用日期:  2025-09-16
  • 网络出版日期:  2025-09-24
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回