留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击波影响下缓发中子剂量场

胡佳琦 商鹏 朱金辉 左应红 刘利 牛胜利

胡佳琦, 商鹏, 朱金辉, 等. 冲击波影响下缓发中子剂量场[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250222
引用本文: 胡佳琦, 商鹏, 朱金辉, 等. 冲击波影响下缓发中子剂量场[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250222
Hu Jiaqi, Shang Peng, Zhu Jinhui, et al. Influences of blast wave on dose field of delayed neutron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250222
Citation: Hu Jiaqi, Shang Peng, Zhu Jinhui, et al. Influences of blast wave on dose field of delayed neutron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250222

冲击波影响下缓发中子剂量场

doi: 10.11884/HPLPB202537.250222
详细信息
    作者简介:

    胡佳琦,hujiaqi@nint.ac.cn

    通讯作者:

    左应红,zuoyinghong@nint.ac.cn

  • 中图分类号: TL72

Influences of blast wave on dose field of delayed neutron

  • 摘要: 作为原子核裂变后的重要特征之一,裂变碎片发射的缓发中子在核技术及工程领域应用广泛。重大核反应堆事故(切尔诺贝利,福岛)通常伴随爆炸发生,为合理评估裂变产物形成的缓发中子剂量场,需考虑冲击波对裂变缓发中子输运的影响。本研究采用蒙特卡罗方法模拟缓发中子输运,建立质量厚度与缓发中子剂量的对应关系。使用基于镜像方法的LAMBR模型计算冲击波扰动下缓发中子源附近空气密度复杂分布。基于质量厚度等效衰减规律,结合LAMBR模型,计算给出地面测点处典型裂变核素缓发中子剂量场,分析冲击波对缓发中子输运的影响。研究表明,若冲击波源强确定,随着源高增加冲击波对缓发中子输运的增强效应也随之显著。此外,当源高接近地面且冲击波源强较大时,地面反射波可能会削弱缓发中子输运。
  • 图  1  基于质量厚度等效衰减规律的缓发中子剂量计算流程图

    Figure  1.  Diagram for calculating delayed neutron dose based on mass thickness attenuation law

    图  2  235U裂变缓发中子能谱

    Figure  2.  Energy spectra of delayed neutron emitted from fission products of 235U

    图  3  235U、239Pu和238U在1~2 s时间内的裂变缓发中子能谱

    Figure  3.  Energy spectra of delayed neutron emitted from fission products of 235U, 239Pu, and 238U at time range from 1 s to 2 s

    图  4  冲击波源强为50 kt TNT当量,源高分别为200 m、400 m、600 m时,地面测点处缓发中子剂量

    Figure  4.  Ground-level delayed neutron doses for 50 kt TNT equivalent explosion at altitudes of 200 m, 400 m, and 600 m

    图  5  冲击波源强为50 kt TNT当量,源高分别为200 m、400 m、600 m时,有无冲击波影响的缓发中子剂量相对偏差

    Figure  5.  Relative deviation of the delayed neutron doses with effects of blast and without effects of blast wave for 50 kt TNT equivalent explosion at altitudes of 200 m, 400 m, and 600 m

    图  6  冲击波源强为100 kt TNT当量,源高分别为800 m、1000 m、1 200 m时,地面测点处缓发中子剂量

    Figure  6.  Ground-level delayed neutron doses for 100 kt TNT equivalent explosion at altitudes of 800 m, 1000 m, and 1 200 m

    图  7  冲击波源强为100 kt TNT当量,源高分别为800 m、1 000 m、1 200 m时,有无冲击波影响的缓发中子剂量相对偏差

    Figure  7.  Relative deviation of the delayed neutron doses with effects of blast and without effects of blast wave for 100 kt TNT equivalent explosion at altitudes of 800 m, 1 000 m, and 1 200 m

    图  8  冲击波源强为50 kt TNT当量,源高为200 m,时间分别为0.01 s、0.1 s、0.3 s、0.5 s,冲击波影响下空气密度分布

    Figure  8.  Distributions of air density under effects of blast wave of 50 kt TNT equivalent explosion at altitude of 200m for times at 0.01 s, 0.1 s, 0.3 s, 0.5 s

    图  9  冲击波源强为50 kt TNT当量,源高为600 m,时间分别为0.01 s、0.5 s、1 s、2 s,冲击波影响下空气密度分布

    Figure  9.  Distributions of air density under effects of blast wave of 50 kt TNT equivalent explosion at altitude of 600 m for times at 0.01 s, 0.5 s, 1 s, 2 s

    图  10  冲击波源强为500 kt TNT当量,源高为100 m,地面测点处缓发中子剂量

    Figure  10.  Ground-level delayed neutron doses for 500 kt TNT equivalent explosion at altitude of 100 m

    图  11  冲击波源强为500 kt TNT当量,源高为100 m,时间分别为0.01 s和0.5 s,冲击波影响下空气密度分布

    Figure  11.  Distributions of air density under effects of blast wave of 500 kt TNT equivalent explosion at altitude of 100 m for times at 0.01 s and 0.05 s

  • [1] Sekimoto H, Nagata A. Performance optimization of the CANDLE reactor for nuclear energy sustainability[J]. Energy Conversion and Management, 2010, 51(9): 1788-1791. doi: 10.1016/j.enconman.2009.12.045
    [2] Pakhomov S A, Dubasov Y V. Estimation of explosion energy yield at Chernobyl NPP accident[J]. Pure and Applied Geophysics, 2010, 167(4): 575-580.
    [3] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Manual of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [4] Brady M C, England T R. Delayed neutron data and group parameters for 43 fissioning systems[J]. Nuclear Science and Engineering, 1989, 103(2): 129-149. doi: 10.13182/NSE103-129
    [5] Brown D A, Chadwick M B, Capote R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [6] 伏琰军, 商鹏, 左应红, 等. 降雨对中子大气输运影响的蒙特卡罗模拟[J]. 现代应用物理, 2022, 13: 020207 doi: 10.12061/j.issn.2095-6223.2022.020207

    Fu Yanjun, Shang Peng, Zuo Yinghong, et al. Monte Carlo simulation of the effect of rainfall on neutron atmospheric transport[J]. Modern Applied Physics, 2022, 13: 020207 doi: 10.12061/j.issn.2095-6223.2022.020207
    [7] 刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13: 010202

    Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
    [8] 李夏至, 牛胜利, 朱金辉. 临近空间核爆炸X射线能注量空间分布的模拟计算[J]. 现代应用物理, 2020, 11: 010201 doi: 10.12061/j.issn.2095-6223.2020.010201

    Li Xiazhi, Niu Shengli, Zhu Jinhui. Calculation of space distribution of X-ray energy fluence from nuclear detonation in near space[J]. Modern Applied Physics, 2020, 11: 010201 doi: 10.12061/j.issn.2095-6223.2020.010201
    [9] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [10] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [11] 贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法[J]. 爆炸与冲击, 2019, 39: 064201 doi: 10.11883/bzycj-2018-0167

    Jia Leiming, Wang Shufei, Tian Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion and Shock Waves, 2019, 39: 064201 doi: 10.11883/bzycj-2018-0167
    [12] Chan P C, Klein H H. A study of blast effects inside an enclosure[J]. Journal of Fluids Engineering, 1994, 116(3): 450-455. doi: 10.1115/1.2910297
    [13] Wu Z, Guo J, Yao X, et al. Analysis of explosion in enclosure based on improved method of images[J]. Shock Waves, 2017, 27(2): 237-245. doi: 10.1007/s00193-016-0655-y
    [14] Kong B, Lee K, Lee S, et al. Indoor propagation and assessment of blast waves from weapons using the alternative image theory[J]. Shock Waves, 2016, 26(2): 75-85. doi: 10.1007/s00193-015-0581-4
    [15] Needham C E. Blast waves[M]. Cham: Springer, 2018.
    [16] 朱金辉, 李夏至, 左应红, 等. 不同大气密度条件下近地面γ射线输运的几何相似理论研究[J]. 现代应用物理, 2024, 15: 060202

    Zhu Jinhui, Li Xiazhi, Zuo Yinghong, et al. Similarity theory of near-ground gamma-ray transport under different atmospheric density[J]. Modern Applied Physics, 2024, 15: 060202
    [17] Grönroos H. Energy dependent removal cross-sections in fast neutron shielding theory[R]. Stockholm: Aktiebolaget Atomenergi, 1965.
    [18] El-Khayatt A M. Calculation of fast neutron removal cross-sections for some compounds and materials[J]. Annals of Nuclear Energy, 2010, 37(2): 218-222. doi: 10.1016/j.anucene.2009.10.022
    [19] Hila F C, Jecong J F M, Dingle C A M, et al. Generation of fast neutron removal cross sections using a multi-layered spherical shell model[J]. Radiation Physics and Chemistry, 2021, 189: 109735. doi: 10.1016/j.radphyschem.2021.109735
    [20] Keepin G R. Physics of nuclear kinetics[M]. Reading: Addison-Wesley Publishing Company, 1965.
  • 加载中
图(11)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 修回日期:  2025-08-30
  • 录用日期:  2025-08-29
  • 网络出版日期:  2025-09-06

目录

    /

    返回文章
    返回