留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同特征参数纳秒电压脉冲作用下油浸纸的击穿特性

樊冉阳 秦锋 陆均颖 李斯盟 李继胜

樊冉阳, 秦锋, 陆均颖, 等. 不同特征参数纳秒电压脉冲作用下油浸纸的击穿特性[J]. 强激光与粒子束, 2025, 37: 106028. doi: 10.11884/HPLPB202537.250224
引用本文: 樊冉阳, 秦锋, 陆均颖, 等. 不同特征参数纳秒电压脉冲作用下油浸纸的击穿特性[J]. 强激光与粒子束, 2025, 37: 106028. doi: 10.11884/HPLPB202537.250224
Fan Ranyang, Qin Feng, Lu Junying, et al. Breakdown characteristics of oil-impregnated paper with different parameters of high-voltage pulse[J]. High Power Laser and Particle Beams, 2025, 37: 106028. doi: 10.11884/HPLPB202537.250224
Citation: Fan Ranyang, Qin Feng, Lu Junying, et al. Breakdown characteristics of oil-impregnated paper with different parameters of high-voltage pulse[J]. High Power Laser and Particle Beams, 2025, 37: 106028. doi: 10.11884/HPLPB202537.250224

不同特征参数纳秒电压脉冲作用下油浸纸的击穿特性

doi: 10.11884/HPLPB202537.250224
基金项目: 国家自然科学基金项目(12305306)
详细信息
    作者简介:

    樊冉阳,749203230@qq.com

    通讯作者:

    李斯盟,lisimeng@xjtu.edu.cn

  • 中图分类号: TM406

Breakdown characteristics of oil-impregnated paper with different parameters of high-voltage pulse

  • 摘要: 配电变压器在高空电磁脉冲(high-altitude electromagnetic pulse,HEMP)的传导环境下会受到纳秒电应力的入侵,易造成绕组引线间的绝缘失效或损伤。为此,本文以变压器绕组模型为基础,研究以不同半高宽和上升沿的纳秒脉冲电压对油浸纸的伏秒特性、击穿概率、脉冲电压幅值与累积耐受次数间的关系(即U-N特性),并采用Weibull分布函数对数据结果进行拟合。统计试验结果发现不同电压参数对伏秒特性和击穿概率的影响较为明显,在同一击穿概率下,所需要的击穿电压随着半高宽的增加而降低,随着上升沿的增加而增加。观察试验后的波形图得出:油浸纸波头击穿概率随半高宽的增加而降低,随着上升沿的增加而增加,从而导致击穿概率与伏秒特性随之变化,而U-N特性的改变受电压幅值大小的影响较大,电压参数改变的影响较小。
  • 图  1  实验电路

    Figure  1.  Experimental circuit

    图  2  脉冲源输出归一化电压波形

    Figure  2.  Normalized voltage waveform output from pulse source

    图  3  实际电路接线图

    Figure  3.  Diagram of actual circuit wiring

    图  4  油杯电极结构模型

    Figure  4.  Oil cup electrode

    图  5  击穿电压与场强的概率分布

    Figure  5.  Breakdown voltage and breakdown Field Strength

    图  6  拟合参数变化趋势

    Figure  6.  Changing trend in fitting parameter

    图  7  电荷分布示意图

    Figure  7.  Schematic of charge distribution

    图  8  伏秒特性

    Figure  8.  Voltage-time characteristics

    图  9  U-N特性

    Figure  9.  U-N characteristics

    表  1  波头击穿占比

    Table  1.   Percentage of the breakdown at wave head

    rising edge/ns full width at half
    maximum/ns
    percentage/%
    20 100 80.28
    20 300 76.05
    20 500 72.3
    20 700 69.01
    20 900 67.6
    5 500 69.01
    10 500 70.42
    50 500 73.23
    100 500 76.05
    下载: 导出CSV

    表  2  U-N特性拟合数据

    Table  2.   Fitting parameters for U-N characteristics

    rising edge/ns full width at half
    maximum/ns
    K A U0 U0 probability of
    penetration/%
    20 100 18.59 0.02 16.66 3.9
    20 300 16.48 0.02 14.78 3.9
    20 500 16.17 0.025 13.99 3.8
    20 700 14.51 0.024 13.5 4
    20 900 13.7 0.027 12.89 4.3
    5 500 13.4 0.031 19.6 3.5
    10 500 15.7 0.03 16.75 4.3
    50 500 17.9 0.022 12.57 3.2
    100 500 19.33 0.019 11.31 4.4
    下载: 导出CSV
  • [1] Olsen R G, Tarditi A G. EMP coupling to a straight conductor above ground: transmission line formulation based on electromagnetic reciprocity[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 919-927. doi: 10.1109/TEMC.2018.2838080
    [2] 毛从光, 程引会, 谢彦召. 高空电磁脉冲技术基础[M]. 北京: 科学出版社, 2018

    Mao Congguang, Cheng Yinhui, Xie Yanzhao. High altitude electromagnetic pulse technology foundation[M]. Beijing: Science Press, 2018
    [3] 董宁, 谢彦召. 考虑参数不确定性的高空电磁脉冲E1分量环境计算及分析[J]. 强激光与粒子束, 2019, 31: 070002 doi: 10.11884/HPLPB201931.190140

    Dong Ning, Xie Yanzhao. Early-time high-altitude electromagnetic pulse simulation and analysis considering parameter uncertainty[J]. High Power Laser and Particle Beams, 2019, 31: 070002 doi: 10.11884/HPLPB201931.190140
    [4] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [5] Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1423-1430. doi: 10.1109/TEMC.2022.3179676
    [6] 王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105

    Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105
    [7] 秦锋, 陈伟, 毛从光, 等. 电力系统高空电磁脉冲效应研究综述[J]. 现代应用物理, 2023, 14: 030102

    Qin Feng, Chen Wei, Mao Congguang, et al. A review of research on high-altitude electromagnetic pulse effects in power systems[J]. Modern Applied Physics, 2023, 14: 030102
    [8] Xie Haiyan, Du Taijiao, Zhang Maoyu, et al. Theoretical and experimental study of effective coupling length for transmission lines illuminated by HEMP[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1529-1538. doi: 10.1109/TEMC.2015.2463814
    [9] 董亚运, 崔志同, 程引会, 等. kA级脉冲电流注入环的电路建模与分析[J]. 强激光与粒子束, 2022, 34: 095013 doi: 10.11884/HPLPB202234.210565

    Dong Yayun, Cui Zhitong, Cheng Yinhui, et al. Circuit modeling and analysis of kA level pulse current injection probe[J]. High Power Laser and Particle Beams, 2022, 34: 095013 doi: 10.11884/HPLPB202234.210565
    [10] 赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015, 16(9): 16-19

    Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015, 16(9): 16-19
    [11] Gurevich D. EMP and its impact on electrical power system: standards and reports[J]. International Journal of Research and Innovation in Applied Science (IJRIAS), 2016, 1(6): 6-10.
    [12] 国家统计局. 2018年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2019.
    [13] Zheng Jingquan, Shen Yanyang, Li Jie, et al. Electrical tree characteristics of epoxy resin/Aln nanocomposites in LN2 with repetitive nanosecond pulse voltage[J]. IEEE Transactions on Applied Superconductivity, 2021, 31: 7700505.
    [14] 李斯盟, 杨帆, 秦锋, 等. 纳秒脉冲电压下油浸纸局部尖端缺陷击穿特性及损伤规律[J]. 中国电机工程学报, 2022, 42(14): 5326-5337

    Li Simeng, Yang Fan, Qin Feng, et al. Breakdown characteristics and damage law of localized tip defect on oil-immersed paper under nanosecond pulse voltage[J]. Proceedings of the CSEE, 2022, 42(14): 5326-5337
    [15] Qin Feng, Li Simeng, Chen Wei, et al. Quantitative grading of insulation damage to distribution transformers caused by high-altitude electromagnetic pulse based on partial discharge detection[J]. High Voltage, 2025, 10(4): 1032-1042. doi: 10.1049/hve2.12511
    [16] 秦锋, 崔志同, 毛从光, 等. 高空电磁脉冲传导环境下配电变压器绕组电应力分布特性[J]. 现代应用物理, 2025, 16: 030507

    Qin Feng, Cui Zhitong, Mao Congguang, et al. Electric stress distribution characteristics of distribution transformer windings under HEMP conductive environments[J]. Modern Applied Physics, 2025, 16: 030507
    [17] 秦锋, 毛从光, 崔志同, 等. HEMP传导环境下变压器等效电路模型的建立及验证[J]. 现代应用物理, 2021, 12: 020501

    Qin Feng, Mao Congguang, Cui Zhitong, et al. Design and verification of equivalent circuit model of transformer under HEMP conduction environment[J]. Modern Applied Physics, 2021, 12: 020501
    [18] 陈庆国, 池明赫, 高源, 等. 复合电场下油纸(板)绝缘击穿特性及其数学模型[J]. 中国电机工程学报, 2013, 33(31): 170-176

    Chen Qingguo, Chi Minghe, Gao Yuan, et al. Breakdown characteristics and its mathematical model of oil-pressboard insulation under compound electric field[J]. Proceedings of the CSEE, 2013, 33(31): 170-176
    [19] 樊冉阳, 李斯盟, 秦锋, 等. HEMP作用下油纸绝缘工频局放特性[J]. 现代应用物理, 2024, 15: 061206

    Fan Ranyang, Li Simeng, Qin Feng, et al. Partial discharge characteristics of oil-paper insulation at working frequency under HEMP impact[J]. Modern Applied Physics, 2024, 15: 061206
    [20] Li Simeng, Li Qingquan, He Dongxin. PD classification in oil-pressboard insulation by simulating a needle-plate model with +DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 261-269. doi: 10.1109/TDEI.2018.007560
    [21] Lesaint O. Prebreakdown phenomena in liquids: propagation 'modes' and basic physical properties[J]. Journal of Physics D: Applied Physics, 2016, 49: 1 44001.
    [22] Piccin R, Mor A, Morshuis P, et al. Partial discharge analysis of gas insulated systems at high voltage AC and DC[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 218-228. doi: 10.1109/TDEI.2014.004711
    [23] IEC 60060-1: 2010, High-voltage test techniques - Part 1: general definitions and test requirements[S].
    [24] Guo Ruochen, Wang Zhen, He Cong, et al. Breakdown characteristics of transformer oil with cellulose particles in a non-uniform field under lightning impulse voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(5): 1627-1635. doi: 10.1109/TDEI.2020.008892
    [25] 胡一卓, 董明, 谢佳成, 等. 聚合物绝缘材料多因子老化的研究现状与发展[J]. 电网技术, 2020, 44(4): 1276-1289

    Hu Yizhuo, Dong Ming, Xie Jiacheng, et al. Status and progress in multi-factor ageing research for polymer insulation materials[J]. Power System Technology, 2020, 44(4): 1276-1289
    [26] Sun Potao, Sima Wenxia, Zhang Dingfei, et al. Impact of wavefront time of microsecond impulse on the breakdown voltage of oil impregnated paper: mechanism analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(5): 1706-1715. doi: 10.1109/TDEI.2018.007078
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  21
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-19
  • 修回日期:  2025-09-12
  • 录用日期:  2025-09-12
  • 网络出版日期:  2025-09-23
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回