留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学体表引导粒子放疗门控延迟的测量与分析

章希煜 盛尹祥子 沈庄明 杨昱泽

章希煜, 盛尹祥子, 沈庄明, 等. 光学体表引导粒子放疗门控延迟的测量与分析[J]. 强激光与粒子束, 2025, 37: 106024. doi: 10.11884/HPLPB202537.250229
引用本文: 章希煜, 盛尹祥子, 沈庄明, 等. 光学体表引导粒子放疗门控延迟的测量与分析[J]. 强激光与粒子束, 2025, 37: 106024. doi: 10.11884/HPLPB202537.250229
Zhang Xiyu, Sheng-Yin Xiangzi, Shen Zhuangming, et al. Measurement and analysis of gating latency in surface-guided particle therapy[J]. High Power Laser and Particle Beams, 2025, 37: 106024. doi: 10.11884/HPLPB202537.250229
Citation: Zhang Xiyu, Sheng-Yin Xiangzi, Shen Zhuangming, et al. Measurement and analysis of gating latency in surface-guided particle therapy[J]. High Power Laser and Particle Beams, 2025, 37: 106024. doi: 10.11884/HPLPB202537.250229

光学体表引导粒子放疗门控延迟的测量与分析

doi: 10.11884/HPLPB202537.250229
基金项目: 上海市浦江人才计划(23PJ1411100);上海市卫生健康委员会(2024ZZ2054);国家科技重大专项课题(2024ZD0519901);“SPHIC新锐”人才培养计划(SPHICXR202302)
详细信息
    作者简介:

    章希煜,xiyu.zhang@sphic.org.cn

    通讯作者:

    杨昱泽,yuze.yang@sphic.org.cn

  • 中图分类号: R815.6

Measurement and analysis of gating latency in surface-guided particle therapy

  • 摘要: 粒子放疗对呼吸运动高度敏感,低延迟的呼吸门控是确保剂量准确的重要前提。光学体表引导(SGRT)因其具备连续监测与无电离辐射的特性,在粒子放疗中的应用日益增多,成为了呼吸门控的重要手段。然而,放疗领域对于SGRT-质子重离子门控系统时间延迟的验证仍然有限。采用两种不同方法测量SGRT-质子重离子放疗系统的开启与关闭延迟,对两种实验方法进行比较,评估SGRT-质子重离子门控系统的延迟性能,为该技术的应用提供依据。开展两种测量:其一为PPL胶片法,质子束穿越1.5 mm直径的开孔挡铅,在胶片上呈现包含延迟特性的条带状图案,使用扫描仪以0.10 mm分辨率分析胶片条带;其二为高速相机-探测器法,以240 帧/s的高速相机拍摄到达门控条件的时间与探测器接收辐射信号的时间差,计算开启与关闭延迟。本研究通过两种不同的实验方法对门控延迟进行端到端测量,并以合成不确定度进行交叉验证测量结果。采用胶片法与相机-探测器法测得的门控开启延迟分别为79 ms±10 ms和67 ms±10 ms;对应的门控关闭延迟分别为101 ms±9 ms和129 ms±5 ms。该SGRT-质子重离子呼吸门控系统满足我院临床需求。本研究论证了多方法交叉验证门控延迟的可行性和必要性,为SGRT在粒子放疗中的推广与验收提供了量化依据。
  • 图  1  胶片法门控延迟测量装置

    Figure  1.  Measurement device of gating delay based on the film method

    图  2  高速相机-探测器法门控延迟测量装置现场图

    Figure  2.  Photograph of the setup for gating delay measurement using the camera-based method

    图  3  胶片法束流门控延迟测量示例

    Figure  3.  Example of measuring gating latency using the film method

    图  4  胶片法与相机–探测器法测量门控开启与关闭延迟,以散点与均值±合成不确定度表现

    Figure  4.  Gate-on and gate-off latencies measured by the film and camera–detector methods, presented as scatter with mean ± combined uncertainty

    表  1  胶片法与相机法的B类典型最大误差估算

    Table  1.   Typical maximum type B uncertainty estimation for the film method and the camera-detector method

    method uncertainty component label typical maximum error estimation
    film method OD 50% criterion a1 ±0.2 mm
    scanning resolution error a2 ±0.1 mm
    film development uncertainty a3 ±0.5 mm
    motion platform repeatability a4 ±0.2 mm
    camera-detector method nominal frame rate error a5 ±0.1 ms
    frame interval jitter a6 ±0.1 ms
    LED indicator delay a7 ±4 ms
    discrepancy between resonance
    midpoint and LED-on criterion
    a8 ±4.18 ms (1 frame)
    下载: 导出CSV

    表  2  胶片法与相机-探测器法测量门控延迟的均值和不确定度统计

    Table  2.   Statistics of the mean and uncertainty for gating latency measured by the film method and the camera–detector method

    item method standard
    deviation/ms
    type A uncertainty
    $ {u}_{\mathrm{A}} $/ms
    type B uncertainty
    $ {u}_{\mathrm{B}} $/ms
    mean ± combined
    uncertainty/ms
    beam-on
    gating latency
    camera–detector method 28 9 3 67±10
    film method 2 1 10 79±10
    beam-off
    gating latency
    camera–detector method 13 4 3 129±5
    film method 8 5 7 101±9
    下载: 导出CSV
  • [1] Parodi K, Polf J C. In vivo range verification in particle therapy[J]. Medical Physics, 2018, 45(11): e1036-e1050.
    [2] Durante M, Orecchia R, Loeffler J S. Charged-particle therapy in cancer: clinical uses and future perspectives[J]. Nature Reviews Clinical Oncology, 2017, 14(8): 483-495. doi: 10.1038/nrclinonc.2017.30
    [3] Kubiak T. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation[J]. British Journal of Radiology, 2016, 89: 20150275. doi: 10.1259/bjr.20150275
    [4] Lebbink F, Stock M, Georg D, et al. The influence of motion on the delivery accuracy when comparing actively scanned carbon ions versus protons at a synchrotron-based radiotherapy facility[J]. Cancers, 2022, 14: 1788. doi: 10.3390/cancers14071788
    [5] Lu H M, Brett R, Sharp G, et al. A respiratory-gated treatment system for proton therapy[J]. Medical Physics, 2007, 34(8): 3273-3278. doi: 10.1118/1.2756602
    [6] Otani Y, Fukuda I, Tsukamoto N, et al. A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy[J]. Medical Physics, 2010, 37(12): 6178-6186. doi: 10.1118/1.3512798
    [7] Freislederer P, Kügele M, Öllers M, et al. Recent advances in surface guided radiation therapy[J]. Radiation Oncology, 2020, 15: 187. doi: 10.1186/s13014-020-01629-w
    [8] Naumann P, Batista V, Farnia B, et al. Feasibility of optical surface-guidance for position verification and monitoring of stereotactic body radiotherapy in deep-inspiration breath-hold[J]. Frontiers in Oncology, 2020, 10: 573279. doi: 10.3389/fonc.2020.573279
    [9] Hanley J, Dresser S, Simon W, et al. AAPM Task Group 198 Report: an implementation guide for TG 142 quality assurance of medical accelerators[J]. Medical Physics, 2021, 48(10): e830-e885.
    [10] Al-Hallaq H A, Cerviño L, Gutierrez A N, et al. AAPM task group report 302: surface-guided radiotherapy[J]. Medical Physics, 2022, 49(4): e82-e112.
    [11] 吴泇俣, 嵇卫星, 张建英. 呼吸门控放射治疗中时间延迟的测量方法[J]. 中国医疗设备, 2022, 37(5): 161-165 doi: 10.3969/j.issn.1674-1633.2022.05.034

    Wu Jiayu, Ji Weixing, Zhang Jianying. Review of methods for measuring time delay in respiratory gated radiotherapy[J]. China Medical Devices, 2022, 37(5): 161-165 doi: 10.3969/j.issn.1674-1633.2022.05.034
    [12] Chen Li, Bai Sen, Li Guangjun, et al. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique[J]. Radiation Oncology, 2020, 15: 170. doi: 10.1186/s13014-020-01611-6
    [13] Barfield G, Burton E W, Stoddart J, et al. Quality assurance of gating response times for surface guided motion management treatment delivery using an electronic portal imaging detector[J]. Physics in Medicine & Biology, 2019, 64: 125023.
    [14] Yuze Y, Moyers M F, Zhang X. Reduced time-delay for beam gating using optical marker tracking and FPGA gating interface[C]//AAPM 66th Annual Meeting & Exhibition. 2024.
    [15] Worm E S, Thomsen J B, Johansen J G, et al. A simple method to measure the gating latencies in photon and proton based radiotherapy using a scintillating crystal[J]. Medical Physics, 2023, 50(6): 3289-3298. doi: 10.1002/mp.16418
    [16] Tan H Q, Koh C W Y, Lew K S, et al . Real-time gated proton therapy with a reduced source to imager distance: Commissioning and quality assurance[J]. Physica Medica, 2024, 122: 103380. doi: 10.1016/j.ejmp.2024.103380
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  24
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-20
  • 修回日期:  2025-09-03
  • 录用日期:  2025-09-05
  • 网络出版日期:  2025-09-20
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回