留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体激光器辐照损伤效应试验方法

王祖军

王祖军. 半导体激光器辐照损伤效应试验方法[J]. 强激光与粒子束, 2025, 37: 106019. doi: 10.11884/HPLPB202537.250233
引用本文: 王祖军. 半导体激光器辐照损伤效应试验方法[J]. 强激光与粒子束, 2025, 37: 106019. doi: 10.11884/HPLPB202537.250233
Wang Zujun. Test methods of radiation damage effects on semiconductor laser devices[J]. High Power Laser and Particle Beams, 2025, 37: 106019. doi: 10.11884/HPLPB202537.250233
Citation: Wang Zujun. Test methods of radiation damage effects on semiconductor laser devices[J]. High Power Laser and Particle Beams, 2025, 37: 106019. doi: 10.11884/HPLPB202537.250233

半导体激光器辐照损伤效应试验方法

doi: 10.11884/HPLPB202537.250233
基金项目: 国家自然科学基金项目(U2167208);陕西省自然科学基础研究计划项目(2024JC-JCQN-10)
详细信息
    作者简介:

    王祖军,wzj029@qq.com

  • 中图分类号: TN248.8

Test methods of radiation damage effects on semiconductor laser devices

  • 摘要: 半导体激光器(LD)作为光源器件被广泛应用于光通信、测量、成像、显示、照明、工业加工、医疗诊断等领域,随着LD在空间光通信、大型强子对撞机、核工业等辐射环境中的大量应用,工作在空间辐射或核辐射环境中的LD会受到辐射损伤的问题日益突出,以LD为核心器件的光通信系统在辐射环境中的可靠性问题备受关注。鉴于国内外关于LD辐照损伤效应试验方法相关的研究报道较少,主要针对LD在辐射环境中应用时遭受的辐照损伤效应,参考与电子元器件辐射效应相关的国内外标准、规范、指南,结合LD辐照损伤效应试验、辐射粒子输运模拟计算、辐照效应仿真模拟、辐照损伤机理分析,从辐照试验源选取、试验流程、辐照偏置条件等方面开展LD辐照损伤效应试验方法研究,分别建立LD位移效应、电离总剂量效应、瞬时剂量率效应辐照试验流程,从而形成辐照损伤效应试验方法,为开展LD辐照损伤评估和抗辐射加固性能考核提供试验技术支撑。
  • 图  1  LD的P-I特性曲线随反应堆中子辐照增大的变化关系曲线

    Figure  1.  P-I curves versus the reactor neutron fluence

    图  2  半导体激光器位移效应辐照试验流程

    Figure  2.  Test procedure of displacement radiation effects on LD

    图  3  不同偏置下辐照后的LD阈值电流与辐照前阈值电流之比随中子辐照注量的变化曲线

    Figure  3.  Ratio of the threshold current after radiation of LD to threshold current before radiation versus the reactor neutron fluence with different bias conditions

    图  4  在能量为5 MeV,注量为3×1013 p/cm2质子的条件下,LD处于不同偏置状态下辐照后的P-I特性比较

    Figure  4.  Comparison of LD P-I curves at the 5 MeV proton fluence of 3×1013 p/cm2 with different bias conditions

    图  5  半导体激光器电离辐射总剂量效应辐照试验流程

    Figure  5.  Test procedure of total ionizing dose radiation effects on LD

    图  6  半导体激光器瞬时剂量率效应辐照试验流程

    Figure  6.  Test procedure of transient dose rate radiation effects on LD

  • [1] 王祖军, 宁浩, 薛院院, 等. 半导体激光器辐照损伤效应实验研究进展[J]. 半导体光电, 2020, 41(2): 151-158

    Wang Zujun, Ning Hao, Xue Yuanyuan, et al. Research progresses of radiation damage experiments in laser diodes[J]. Semiconductor Optoelectronics, 2020, 41(2): 151-158
    [2] 宁浩. 辐照诱发半导体激光器性能退化实验研究与仿真模拟[D]. 湘潭: 湘潭大学, 2020

    Ning Hao. Experimental research and analogue simulation of the performance degradation of laser diode induced by radiation[D]. Xiangtan: Xiangtan University, 2020
    [3] 常国龙. 半导体激光器辐射效应及影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2010

    Chang Guolong. The study of the influence of radiation effect on laser diodes[D]. Harbin: Harbin Institute of Technology, 2010
    [4] 王立军, 宁永强. 高功率半导体激光器[M]. 北京: 国防工业出版社, 2016

    Wang Lijun, Ning Yongqiang. High power semiconductor laser[M]. Beijing: National Defense Industry Press, 2016
    [5] 姜会林, 佟首峰, 张立中, 等. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010

    Jiang Huilin, Tong Shoufeng, Zhang Lizhong, et al. The technologies and systems of space laser communication[M]. Beijing: National Defense Industry Press, 2010
    [6] Fields R, Kozlowski D, Yura H, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[C]//Proceedings of 2011 International Conference on Space Optical Systems and Applications. 2011: 44-53.
    [7] Petree M C. Degradation of luminescence in neutron-irradiated GaAs diodes[J]. Applied Physics Letters, 1963, 3(4): 67. doi: 10.1063/1.1753871
    [8] Barnes C E. Neutron damage in GaAs Laser Diodes: at and above Laser Threshold[J]. IEEE Transactions on Nuclear Science, 1972, 19(6): 382-385. doi: 10.1109/TNS.1972.4326862
    [9] Schroeder J O, Noel B W. Neutron irradiation effects on diffused GaAs laser diodes[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 261-265. doi: 10.1109/TNS.1973.4327405
    [10] Minden H T. Effects of Proton bombardment on the properties of GaAs laser diodes[J]. Journal of Applied Physics, 1976, 47(3): 1090-1094. doi: 10.1063/1.322731
    [11] Millea M F, Aukerman L W. The role of diffusion current in the electroluminescence of GaAs diodes[J]. Applied Physics Letters, 1964, 5(8): 168-169. doi: 10.1063/1.1754101
    [12] Compton D M J, Cesena R A. Mechanisms of radiation effects on lasers[J]. IEEE Transactions on Nuclear Science, 1967, 14(6): 55-61. doi: 10.1109/TNS.1967.4324775
    [13] Barnes C E. Effects of 60Co gamma irradiation on epitaxial GaAs Laser Diodes[J]. Physical Review B, 1970, 1(12): 4735-4747. doi: 10.1103/PhysRevB.1.4735
    [14] 林理彬, 黄万霞, 孔梅影. 粒子束辐照在AlGaAs/GaAs量子阱材料中引入的深能级缺陷[J]. 人工晶体学报, 2000, 29(s1): 248

    Lin Libin, Huang Wanxia, Kong Meiying. Deep energy defects in AlGaAs/GaAs quantum well material introduced by particle beam irradiation[J]. Journal of Synthetic Crystals, 2000, 29(s1): 248
    [15] 黄绍艳, 刘敏波, 王祖军, 等. InGaAsP多量子阱激光二极管及其组件的γ辐射效应[J]. 原子能科学技术, 2009, 43(11): 1024-1028

    Huang Shaoyan, Liu Minbo, Wang Zujun, et al. γ-ray radiation effect on InGaAsP multi-quantum well laser diodes and its component[J]. Atomic Energy Science and Technology, 2009, 43(11): 1024-1028
    [16] 黄绍艳, 刘敏波, 唐本奇, 等. 多量子阱激光二极管质子辐射效应及其退火特性[J]. 强激光与粒子束., 2009, 21(9): 1405-1410

    Huang Shaoyan, Liu Minbo, Tang Benqi, et al. Proton irradiation effects on multi-quantum-well laser diodes and their annealing characteristics[J]. High Power Laser and Particle Beams, 2009, 21(9): 1405-1410
    [17] 杨瑞. 量子点激光器空间电离辐射损伤效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2013

    Yang Rui. Research on ionizing radiation effect of quantum dot laser[D]. Harbin: Harbin Institute of Technology, 2013
    [18] 王俊, 高欣, 冯展祖, 等. 空间光通信用量子点激光器辐射损伤效应研究[J]. 真空与低温, 2019, 25(1): 41-45

    Wang Jun, Gao Xin, Feng Zhanzu, et al. Radiation damage effect of quantum dot laser with space optical communication[J]. Vacuum and Cryogenics, 2019, 25(1): 41-45
    [19] MIL-STD-883H, Ionizing radiation (total dose) test procedure[S].
    [20] GJB 9397-2018, 军用电子元器件中子辐射效应试验方法[S]

    GJB 9397-2018, Test method for neutron radiation effects of military electronic components[S]
    [21] GJB 5422-2005, 军用电子元器件γ射线累积剂量效应测量方法[S]

    GJB 5422-2005, Testing method of military electronic devices for γ-ray total dose radiation[S]
    [22] GJB 548C-2021, 微电子器件试验方法和程序[S]

    GJB 548C-2021, Test methods and procedures for microelectronic devices[S]
    [23] GJB 7350-2011, 军用电子器件脉冲γ射线效应试验方法[S]

    GJB 7350-2011, Testing method of pulse γ-ray radiation effects for military electronic devices
    [24] Petkov M P. New millennium program: space environments on electronic components guidelines[R]. NASA, 2003.
    [25] Space Component Coordination Group. Total dose steady-state irradiation test method[R]. ESA/SCC basic specification No. 22900, 1995.
    [26] 王祖军, 薛院院, 刘敏波, 等. CCD空间环境辐射效应地面模拟试验方法[J]. 现代应用物理, 2016, 7: 040601

    Wang Zujun, Xue Yuanyuan, Liu Minbo, et al. Ground simulation test methods for space environment radiation effects on charge coupled devices[J]. Modern Applied Physics, 2016, 7: 040601
    [27] 王祖军. CMOS图像传感器辐照损伤效应试验方法[J]. 半导体光电, 2025, 46(1): 180-188

    Wang Zujun. Test methods for radiation damage effects on CMOS image sensors[J]. Semiconductor Optoelectronics, 2025, 46(1): 180-188
    [28] 谭志新, 敬罕涛, 樊瑞睿, 等. 中国散裂中子源伴生质子辐照实验平台及其技术参数的确定[J]. 现代应用物理, 2024, 15: 020401

    Tan Zhixin, Jing Hantao, Fan Ruirui, et al. Associated protons experimental platform of China spallation neutron source and determination of its technical parameters[J]. Modern Applied Physics, 2024, 15: 020401
    [29] 沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606

    Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606
    [30] 于春青, 李同德, 王亮, 等. 一款商用MRAM电离总剂量效应研究[J]. 现代应用物理, 2023, 14: 010605

    Yu Chunqing, Li Tongde, Wang Liang, et al. Total ionizing dose effect of a commercial magnetoresistive random access memory[J]. Modern Applied Physics, 2023, 14: 010605
    [31] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [32] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [33] GJB 3756A-2015, 测量不确定度的表示及评定[S]

    GJB 3756A-2015, Expression and evaluation of uncertainty in measurement[S]
    [34] GB 18871-2002, 电离辐射防护与辐射源安全基本标准[S]

    GB 18871-2002, Basic standards for protection against ionizing radiation and for the safety of radiation sources[S]
    [35] 王祖军, 唐本奇, 肖志刚, 等. CCD辐射损伤效应及加固技术研究进展[J]. 半导体光电, 2009, 30(6): 797-802,814

    Wang Zujun, Tang Benqi, Xiao Zhigang, et al. Progress of radiation damage effects and hardening technology on CCD[J]. Semiconductor Optoelectronics, 2009, 30(6): 797-802,814
    [36] 王祖军, 刘静, 薛院院, 等. CMOS图像传感器总剂量辐照效应及加固技术研究进展[J]. 半导体光电, 2017, 38(1): 1-7

    Wang Zujun, Liu Jing, Xue Yuanyuan, et al. Progress of total ionizing dose radiation effects and hardening technology of CMOS image sensors[J]. Semiconductor Optoelectronics, 2017, 38(1): 1-7
  • 加载中
图(6)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  25
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-23
  • 修回日期:  2025-09-12
  • 录用日期:  2025-09-12
  • 网络出版日期:  2025-09-20
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回