Design of dose simulation system for BNCT based on MeVisLab and OpenMC
-
摘要: 硼中子俘获治疗(BNCT)的剂量模拟是其设备研发、药物迭代和临床试验的基石。面向基于临床 CT 的 BNCT 剂量模拟与分析需求,本文提出并构建一套全新的 BNCT 剂量模拟系统:在医学图像处理平台MeVisLab内完成 DICOM 影像配准、靶区勾画与RTStruct/RTDose 接口;以开源 OpenMC 蒙特卡罗程序为引擎执行中子输运模拟,实现医学图像亨氏单位(HU)值与材料映射与可变网格计算。经本系统模拟临床 CT 数据验证表明,肿瘤靶区22 cm 深度处硼剂量占总剂量 80.9%。该系统以周级开发周期和较低的许可证成本,为BNCT剂量模拟提供了高效的计算工具,并为科研教学中的BNCT剂量模拟提供了参考框架。Abstract:
Background Boron neutron capture therapy (BNCT) dose simulation is the cornerstone of equipment development, drug iteration and clinical trials.Purpose To meet the need for BNCT dose simulation and analysis based on clinical CT, we propose and build a brand-new BNCT dose simulation system.Methods Inside the medical-image platform MeVisLab we complete DICOM registration, target delineation and RTStruct/RTDose interfaces; the open-source Monte Carlo code OpenMC is used as the engine to execute neutron-transport simulation, realizing HU-to-material mapping and variable-mesh calculation.Results Validation with clinical CT data simulated by the system shows that at 22 cm depth in the tumour target the boron dose accounts for 80.9% of the total dose.Conclusions Developed within weeks and with low licence cost, the system provides an efficient calculation tool for BNCT dose simulation and a reference framework for BNCT dose simulation in research and education.-
Key words:
- boron neutron capture therapy /
- dose simulation system /
- MeVisLab /
- OpenMC /
- Monte Carlo simulation
-
表 1 正常人体组织HU值
Table 1. Normal human tissue HU values
Category HU value Category HU value Category HU value water 0±10 blood 13~32 muscle 40~80 cerebrospinal fluid 3~8 blood clot 64~84 gallbladder 10~30 plasma 3~14 heart 50~70 fat −20~−80 edema 7~17 spleen 50~65 calcification 80~300 white matter 25~32 pancreas 45~55 air −200 gray matter 30~40 kidney 40~50 bone 400 -
[1] Moss R L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT)[J]. Applied Radiation and Isotopes, 2014, 88: 2-11. doi: 10.1016/j.apradiso.2013.11.109 [2] 朱益楠, 林作康, 郁海燕, 等. 基于蒙特卡罗几何分裂减方差技巧的AB-BNCT治疗室屏蔽模拟分析[J]. 核技术, 2025, 48: 010202 doi: 10.11889/j.0253-3219.2025.hjs.48.230415Zhu Yinan, Lin Zuokang, Yu Haiyan, et al. Simulation analysis of AB-BNCT treatment room shielding based on Monte Carlo geometric splitting variance reduction technique[J]. Nuclear Techniques, 2025, 48: 010202 doi: 10.11889/j.0253-3219.2025.hjs.48.230415 [3] 何泳成, 吴煊, 张玉亮, 等. BNCT02加速器机器保护系统设计[J]. 强激光与粒子束, 2025, 37: 014002 doi: 10.11884/HPLPB202537.240153He Yongcheng, Wu Xuan, Zhang Yuliang, et al. Design of machine protection system for BNCT02 accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 014002 doi: 10.11884/HPLPB202537.240153 [4] 田永顺, 胡志良, 童剑飞, 等. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计[J]. 物理学报, 2018, 67: 142801 doi: 10.7498/aps.67.20180380Tian Yongshun, Hu Zhiliang, Tong Jianfei, et al. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy[J]. Acta Physica Sinica, 2018, 67: 142801 doi: 10.7498/aps.67.20180380 [5] 王勇泉, 王泽祯, 李宁, 等. 基于加速器的硼中子俘获治疗装置束流整形体的设计及其临床参数研究[J]. 原子能科学技术, 2022, 56(7): 1440-1447 doi: 10.7538/yzk.2021.youxian.0467Wang Yongquan, Wang Zezhen, Li Ning, et al. Design of beam shaping assembly for accelerator-based boron neutron capture therapy and study on its clinical parameter[J]. Atomic Energy Science and Technology, 2022, 56(7): 1440-1447 doi: 10.7538/yzk.2021.youxian.0467 [6] 鱼红亮, 郑传城, 孙亮. MCNP计算含肿瘤Snyder修正头部模型的硼中子俘获治疗剂量[J]. 原子能科学技术, 2010, 44(1): 89-94 doi: 10.7538/yzk.2010.44.01.0089Yu Hongliang, Zheng Chuancheng, Sun Liang. Boron neutron capture therapy dose calculation for tumor modified Snyder head phantom using MCNP[J]. Atomic Energy Science and Technology, 2010, 44(1): 89-94 doi: 10.7538/yzk.2010.44.01.0089 [7] Spezi E, Lewis G. An overview of Monte Carlo treatment planning for radiotherapy[J]. Radiation Protection Dosimetry, 2008, 131(1): 123-129. doi: 10.1093/rpd/ncn277 [8] Nigg D W, Wemple C A, Wessol D E, et al. SERA—an advanced treatment planning system for neutron therapy and BNCT[J]. Transactions of the American Nuclear Society, 1999, 80: 66-67. [9] Zamenhof R G, Clement S D, Harling O K, et al. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors[M]//Harling O K, Bernard J A, Zamenhof R F. Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. Boston: Springer, 1990: 283-305. [10] Kumada H, Yamamoto K, Matsumura A, et al. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy[J]. Physics in Medicine & Biology, 2004, 49(15): 3353-3365. [11] Lin T Y, Liu Y W H. Development and verification of THORplan—a BNCT treatment planning system for THOR[J]. Applied Radiation and Isotopes, 2011, 69(12): 1878-1881. doi: 10.1016/j.apradiso.2011.03.025 [12] Kumada H, Takada K, Sakurai Y, et al. Development of a multimodal Monte Carlo based treatment planning system[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 286-290. [13] Hu N, Tanaka H, Kakino R, et al. Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system[J]. Radiation Oncology, 2021, 16(1): 243. doi: 10.1186/s13014-021-01968-2 [14] Chen Jiang, Teng Y C, Zhong Wanbing, et al. Development of Monte Carlo based treatment planning system for BNCT[J]. Journal of Physics: Conference Series, 2022, 2313: 012012. doi: 10.1088/1742-6596/2313/1/012012 [15] Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [16] Boehler T, van Straaten D, Wirtz S, et al. A robust and extendible framework for medical image registration focused on rapid clinical application deployment[J]. Computers in Biology and Medicine, 2011, 41(6): 340-349. doi: 10.1016/j.compbiomed.2011.03.011 [17] 赵攀, 陈义学, 林辉, 等. MCNP/MCNPX几何栅元划分方法对精确放疗剂量计算的影响研究[J]. 原子核物理评论, 2006, 23(2): 258-262 doi: 10.3969/j.issn.1007-4627.2006.02.040Zhao Pan, Chen Yixue, Lin Hui, et al. Effect of different voxel-uniting methods on the dose calculation of MCNP/MCNPX[J]. Nuclear Physics Review, 2006, 23(2): 258-262 doi: 10.3969/j.issn.1007-4627.2006.02.040 [18] International Commission on Radiological Protection. Conversion coefficients for radiological protection quantities for external radiation exposures[R]. ICRP Publication 116, 2010: 1-257. [19] 郭鑫. 基于OpenMC的硼中子俘获治疗技术剂量计算方法研究[D]. 合肥: 合肥工业大学, 2024Guo Xin. OpenMC-based dose calculation study of boron neutron capture therapy technology[D]. Hefei: Hefei University of Technology, 2024 -