留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MeVisLab与OpenMC的BNCT剂量模拟系统设计

杨训武 卢棚 王胜哲 李佳 姜韦 梁立振

杨训武, 卢棚, 王胜哲, 等. 基于MeVisLab与OpenMC的BNCT剂量模拟系统设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250246
引用本文: 杨训武, 卢棚, 王胜哲, 等. 基于MeVisLab与OpenMC的BNCT剂量模拟系统设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250246
Yang Xunwu, Lu Peng, Wang Shengzhe, et al. Design of dose simulation system for BNCT based on MeVisLab and OpenMC[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250246
Citation: Yang Xunwu, Lu Peng, Wang Shengzhe, et al. Design of dose simulation system for BNCT based on MeVisLab and OpenMC[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250246

基于MeVisLab与OpenMC的BNCT剂量模拟系统设计

doi: 10.11884/HPLPB202537.250246
基金项目: 合肥综合性国家科学中心能源研究院(安徽省能源实验室)项目(21KZS202)
详细信息
    作者简介:

    杨训武,2023201725@aust.edu.cn

    通讯作者:

    卢 棚,peng.lu@ie.ah.cn

  • 中图分类号: TL99

Design of dose simulation system for BNCT based on MeVisLab and OpenMC

  • 摘要: 硼中子俘获治疗(BNCT)的剂量模拟是其设备研发、药物迭代和临床试验的基石。面向基于临床 CT 的 BNCT 剂量模拟与分析需求,本文提出并构建一套全新的 BNCT 剂量模拟系统:在医学图像处理平台MeVisLab内完成 DICOM 影像配准、靶区勾画与RTStruct/RTDose 接口;以开源 OpenMC 蒙特卡罗程序为引擎执行中子输运模拟,实现医学图像亨氏单位(HU)值与材料映射与可变网格计算。经本系统模拟临床 CT 数据验证表明,肿瘤靶区22 cm 深度处硼剂量占总剂量 80.9%。该系统以周级开发周期和较低的许可证成本,为BNCT剂量模拟提供了高效的计算工具,并为科研教学中的BNCT剂量模拟提供了参考框架。
  • 图  1  工作流程示意图

    Figure  1.  Workflow diagram

    图  2  整体界面示意图

    Figure  2.  Schematic diagram of the overall interface

    图  3  配准功能实现

    Figure  3.  Registration function implementation

    图  4  配准迭代误差收敛曲线

    Figure  4.  Registration Iterative Error Convergence Curve

    图  5  靶区勾画

    Figure  5.  Target delineation

    图  6  勾画结果展示

    Figure  6.  Contouring result Display

    图  7  体素模型

    Figure  7.  Voxel model

    图  8  射束设置与治疗参数设置

    Figure  8.  Beam and treatment parameter settings

    图  9  不同区域的硼浓度

    Figure  9.  Boron concentration in different regions

    图  10  沿束流方向总剂量与硼剂量深度分布

    Figure  10.  Depth–dose distribution of total and boron dose along the beam axis

    图  11  剂量可视化

    Figure  11.  Dose visualization

    表  1  正常人体组织HU值

    Table  1.   Normal human tissue HU values

    Category HU value Category HU value Category HU value
    water 0±10 blood 13~32 muscle 40~80
    cerebrospinal fluid 3~8 blood clot 64~84 gallbladder 10~30
    plasma 3~14 heart 50~70 fat −20~−80
    edema 7~17 spleen 50~65 calcification 80~300
    white matter 25~32 pancreas 45~55 air −200
    gray matter 30~40 kidney 40~50 bone 400
    下载: 导出CSV
  • [1] Moss R L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT)[J]. Applied Radiation and Isotopes, 2014, 88: 2-11. doi: 10.1016/j.apradiso.2013.11.109
    [2] 朱益楠, 林作康, 郁海燕, 等. 基于蒙特卡罗几何分裂减方差技巧的AB-BNCT治疗室屏蔽模拟分析[J]. 核技术, 2025, 48: 010202 doi: 10.11889/j.0253-3219.2025.hjs.48.230415

    Zhu Yinan, Lin Zuokang, Yu Haiyan, et al. Simulation analysis of AB-BNCT treatment room shielding based on Monte Carlo geometric splitting variance reduction technique[J]. Nuclear Techniques, 2025, 48: 010202 doi: 10.11889/j.0253-3219.2025.hjs.48.230415
    [3] 何泳成, 吴煊, 张玉亮, 等. BNCT02加速器机器保护系统设计[J]. 强激光与粒子束, 2025, 37: 014002 doi: 10.11884/HPLPB202537.240153

    He Yongcheng, Wu Xuan, Zhang Yuliang, et al. Design of machine protection system for BNCT02 accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 014002 doi: 10.11884/HPLPB202537.240153
    [4] 田永顺, 胡志良, 童剑飞, 等. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计[J]. 物理学报, 2018, 67: 142801 doi: 10.7498/aps.67.20180380

    Tian Yongshun, Hu Zhiliang, Tong Jianfei, et al. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy[J]. Acta Physica Sinica, 2018, 67: 142801 doi: 10.7498/aps.67.20180380
    [5] 王勇泉, 王泽祯, 李宁, 等. 基于加速器的硼中子俘获治疗装置束流整形体的设计及其临床参数研究[J]. 原子能科学技术, 2022, 56(7): 1440-1447 doi: 10.7538/yzk.2021.youxian.0467

    Wang Yongquan, Wang Zezhen, Li Ning, et al. Design of beam shaping assembly for accelerator-based boron neutron capture therapy and study on its clinical parameter[J]. Atomic Energy Science and Technology, 2022, 56(7): 1440-1447 doi: 10.7538/yzk.2021.youxian.0467
    [6] 鱼红亮, 郑传城, 孙亮. MCNP计算含肿瘤Snyder修正头部模型的硼中子俘获治疗剂量[J]. 原子能科学技术, 2010, 44(1): 89-94 doi: 10.7538/yzk.2010.44.01.0089

    Yu Hongliang, Zheng Chuancheng, Sun Liang. Boron neutron capture therapy dose calculation for tumor modified Snyder head phantom using MCNP[J]. Atomic Energy Science and Technology, 2010, 44(1): 89-94 doi: 10.7538/yzk.2010.44.01.0089
    [7] Spezi E, Lewis G. An overview of Monte Carlo treatment planning for radiotherapy[J]. Radiation Protection Dosimetry, 2008, 131(1): 123-129. doi: 10.1093/rpd/ncn277
    [8] Nigg D W, Wemple C A, Wessol D E, et al. SERA—an advanced treatment planning system for neutron therapy and BNCT[J]. Transactions of the American Nuclear Society, 1999, 80: 66-67.
    [9] Zamenhof R G, Clement S D, Harling O K, et al. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors[M]//Harling O K, Bernard J A, Zamenhof R F. Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. Boston: Springer, 1990: 283-305.
    [10] Kumada H, Yamamoto K, Matsumura A, et al. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy[J]. Physics in Medicine & Biology, 2004, 49(15): 3353-3365.
    [11] Lin T Y, Liu Y W H. Development and verification of THORplan—a BNCT treatment planning system for THOR[J]. Applied Radiation and Isotopes, 2011, 69(12): 1878-1881. doi: 10.1016/j.apradiso.2011.03.025
    [12] Kumada H, Takada K, Sakurai Y, et al. Development of a multimodal Monte Carlo based treatment planning system[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 286-290.
    [13] Hu N, Tanaka H, Kakino R, et al. Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system[J]. Radiation Oncology, 2021, 16(1): 243. doi: 10.1186/s13014-021-01968-2
    [14] Chen Jiang, Teng Y C, Zhong Wanbing, et al. Development of Monte Carlo based treatment planning system for BNCT[J]. Journal of Physics: Conference Series, 2022, 2313: 012012. doi: 10.1088/1742-6596/2313/1/012012
    [15] Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [16] Boehler T, van Straaten D, Wirtz S, et al. A robust and extendible framework for medical image registration focused on rapid clinical application deployment[J]. Computers in Biology and Medicine, 2011, 41(6): 340-349. doi: 10.1016/j.compbiomed.2011.03.011
    [17] 赵攀, 陈义学, 林辉, 等. MCNP/MCNPX几何栅元划分方法对精确放疗剂量计算的影响研究[J]. 原子核物理评论, 2006, 23(2): 258-262 doi: 10.3969/j.issn.1007-4627.2006.02.040

    Zhao Pan, Chen Yixue, Lin Hui, et al. Effect of different voxel-uniting methods on the dose calculation of MCNP/MCNPX[J]. Nuclear Physics Review, 2006, 23(2): 258-262 doi: 10.3969/j.issn.1007-4627.2006.02.040
    [18] International Commission on Radiological Protection. Conversion coefficients for radiological protection quantities for external radiation exposures[R]. ICRP Publication 116, 2010: 1-257.
    [19] 郭鑫. 基于OpenMC的硼中子俘获治疗技术剂量计算方法研究[D]. 合肥: 合肥工业大学, 2024

    Guo Xin. OpenMC-based dose calculation study of boron neutron capture therapy technology[D]. Hefei: Hefei University of Technology, 2024
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-30
  • 修回日期:  2025-09-09
  • 录用日期:  2025-09-09
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回