留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应堆构件活化和剂量计算研究

于成龙 王显涛 刘仕倡

于成龙, 王显涛, 刘仕倡. 反应堆构件活化和剂量计算研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250247
引用本文: 于成龙, 王显涛, 刘仕倡. 反应堆构件活化和剂量计算研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250247
Yu Chenglong, Wang Xiantao, Liu Shichang. Research on reactor component activation and dose calculation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250247
Citation: Yu Chenglong, Wang Xiantao, Liu Shichang. Research on reactor component activation and dose calculation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250247

反应堆构件活化和剂量计算研究

doi: 10.11884/HPLPB202537.250247
基金项目: 国家自然科学基金项目(U2330117,12175067); 北京市科技新星计划项目(20240484596,20250484805); 中央高校基本科研业务费专项资金项目(2024MS046)
详细信息
    作者简介:

    于成龙,120221110211@ncepu.edu.cn

    通讯作者:

    刘仕倡,liu-sc@ncepu.edu.cn

  • 中图分类号: TL421

Research on reactor component activation and dose calculation

  • 摘要: 放射性源项调查是反应堆退役制订方案、估算费用和进度以及作好辐射防护和应急准备的重要依据。反应堆构件在中子辐照过程中由于中子活化反应会产生大量的放射性核素,其产生的衰变光子是反应堆退役过程中工作人员面临辐射剂量的主要来源。采用蒙特卡罗粒子输运程序(cosRMC、MCNP)和活化计算程序(DEPTH、ALARA)相结合的方法计算反应堆构件在运行一定时间后产生的放射性核素核子数密度、活度和几个主要构件的辐射剂量率。对比通过两个不同活化程序计算得到的计算结果,相对偏差在可接受范围内,表明了cosRMC的活化计算和剂量率计算功能应用于反应堆退役分析的可靠性和准确性。
  • 图  1  NUREG/CR-6115水平剖面图与垂直剖面图

    Figure  1.  Horizontal cross-section and vertical cross-section of NUREG/CR-6115

    图  2  堆芯围板、堆芯吊篮、热屏蔽层和压力容器中子能谱

    Figure  2.  Core baffle, core barrel, thermal shield, and RPV neutron spectrum

    图  3  堆芯围板、堆芯吊篮、热屏蔽层和压力容器各能群光子的停堆剂量率相对误差

    Figure  3.  Core baffle, core barrel, thermal shield, and RPV relative error of the shutdown dose rate for each energy group of photons

    表  1  NUREG/CR-6115 模型结构参数

    Table  1.   Structural parameters of NUREG/CR-6115

    structure inner radius/cm outer radius/cm height/cm materials
    upper reflector \ \ 32.865 306.7 ℃ water + steel
    lower reflector \ \ 13.97 280 ℃ water + steel
    core baffle \ \ 382.115 SS-304 stainless steel
    by-pass flow \ 190.185 382.115 293.3 ℃ boron water
    core barrel 190.185 193.995 382.115 SS-304 stainless steel
    inner inlet water gap 193.995 196.535 382.115 280 ℃ boron water
    thermal shield 196.535 200.345 382.115 SS-304 stainless steel
    outer inlet water gap 200.345 218.440 382.115 280 ℃ boron water
    RPV Liner 218.440 219.075 382.115 SS-304 stainless steel
    RPV 219.075 240.665 382.115 SA-302B stainless steel
    注:“\”表示不适用。
    下载: 导出CSV

    表  2  重要核素产额

    Table  2.   Yield of important nuclides

    structure nuclides atom density/cm−3 |relative error|/%
    ALARA DEPTH
    core baffle 60Co 2.0926E+16 2.1057E+16 0.6278
    51Cr 8.6670E+17 8.6683E+17 0.0148
    55Fe 6.3342E+18 6.3550E+18 0.3280
    59Fe 3.0794E+16 3.0802E+16 0.0268
    54Mn 2.4371E+17 2.4416E+17 0.1826
    48Sc 2.0590E+09 2.0673E+09 0.4039
    65Zn 2.5127E+09 2.5267E+09 0.5573
    core barrel 60Co 9.9192E+14 9.9564E+14 0.3751
    51Cr 8.2801E+16 8.2817E+16 0.0197
    55Fe 5.9648E+17 5.9844E+17 0.3283
    59Fe 2.6898E+15 2.6903E+15 0.0188
    54Mn 2.1917E+16 2.1957E+16 0.1864
    48Sc 2.3200E+07 2.3296E+07 0.4123
    65Zn 1.8511E+06 1.8616E+06 0.5649
    thermal shield 60Co 3.6517E+14 3.6648E+14 0.3583
    51Cr 2.1479E+16 2.1483E+16 0.0193
    55Fe 1.5670E+17 1.5722E+17 0.3310
    59Fe 7.4995E+14 7.5010E+14 0.0203
    54Mn 8.0167E+15 8.0314E+15 0.1831
    48Sc 2.4734E+06 2.4843E+06 0.4421
    65Zn 3.9769E+04 4.0424E+04 1.6461
    RPV 51Cr 6.5003E+11 6.5016E+11 0.0201
    55Fe 2.3698E+15 2.3776E+15 0.3272
    54Mn 2.7002E+14 2.7051E+14 0.1818
    下载: 导出CSV

    表  3  四个目标栅元的停堆剂量率

    Table  3.   Shutdown dose rate of the four target grid cells

    structure dose rate/(Sv/hr) relative error/% −3σ/% 3σ/%
    ALARA DEPTH
    core baffle 6.1679E+00 6.2696E+00 1.6489 3.6347 3.6347
    core barrel 3.9238E+00 3.8921E+00 0.8079 3.3881 3.3881
    thermal shield 1.1709E+00 1.1652E+00 0.4868 3.3986 3.3986
    RPV 1.6995E-01 1.7454E-01 2.7008 4.9815 4.9815
    下载: 导出CSV
  • [1] Bleynat S, Dulla S, Pancotti F, et al. Hybrid Monte Carlo/deterministic activation calculation to support the decommissioning of PWRs: validation against data from the thermal shield of the Enrico Fermi NPP[J]. Annals of Nuclear Energy, 2023, 181: 109527. doi: 10.1016/j.anucene.2022.109527
    [2] 冯建, 王凯, 邱立青, 等. 反应堆污染部件放射性存留量估算方法[J]. 科技视界, 2018(7): 102-103

    Feng Jian, Wang Kai, Qiu Liqing, et al. A method for estimating the radioactive inventory of the contaminated parts in reactors[J]. Science & Technology Vision, 2018(7): 102-103
    [3] 邢宏传, 周荣生, 徐济鋆. 退役核设施放射性存留量估算方法研究[J]. 核动力工程, 2005, 26(6): 544-547,571

    Xing Hongchuan, Zhou Rongsheng, Xu Jiyun. Study of estimating method for residual radioactive on decommissioning nuclear establishment[J]. Nuclear Power Engineering, 2005, 26(6): 544-547,571
    [4] 郭武仁, 林晓玲, 郑宁宁. 反应堆退役压力容器放射性活度估算方法[J]. 核动力工程, 2011, 32(4): 114-117

    Guo Wuren, Lin Xiaoling, Zheng Ningning. Method for estimation of activity in decommissioned nuclear reactor pressure vessel[J]. Nuclear Power Engineering, 2011, 32(4): 114-117
    [5] 楼吉洁, 杨波, 毕光文, 等. 小型压水堆无硼堆芯高精度数值模拟验证研究[J]. 现代应用物理, 2024, 15: 010402

    Lou Jijie, Yang Bo, Bi Guangwen, et al. High-precision numerical simulation and verification of soluble boron-free core in small pressurized water reactors[J]. Modern Applied Physics, 2024, 15: 010402
    [6] 罗上庚. 核设施退役中几个值得重视的问题[J]. 辐射防护, 2002, 22(3): 129-134,139

    Luo Shanggeng. Some noticeable issues of decommissioning of nuclear facilities[J]. Radiation Protection, 2002, 22(3): 129-134,139
    [7] 张显, 刘仕倡, 强胜龙, 等. 蒙特卡罗全局权窗和均匀裂变源方法在全堆临界计算中的应用研究[J]. 原子能科学技术, 2021, 55(s1): 66-72

    Zhang Xian, Liu Shichang, Qiang Shenglong, et al. Application of Monte Carlo global weight window and uniform fission site methods in full core criticality calculation[J]. Atomic Energy Science and Technology, 2021, 55(s1): 66-72
    [8] 李锐, 张显, 刘仕倡, 等. 蒙特卡罗粒子输运程序cosRMC的深穿透屏蔽计算研究[J]. 原子能科学技术, 2021, 55(s1): 82-87

    Li Rui, Zhang Xian, Liu Shichang, et al. Research on deep penetration shielding calculation using Monte Carlo particle transport code cosRMC[J]. Atomic Energy Science and Technology, 2021, 55(s1): 82-87
    [9] 张宽, 宋婧, 陈珍平, 等. 蒙特卡罗粒子输运计算网格计数方法研究[J]. 核科学与工程, 2016, 36(2): 200-204

    Zhang Kuan, Song Jing, Chen Zhenping, et al. Mesh tally method study for Monte Carlo particles transport simulation[J]. Nuclear Science and Engineering, 2016, 36(2): 200-204
    [10] 刘扬, 林晓玲, 蔡琦. 核动力装置活化构件放射性存留量计算及影响因素分析[J]. 核动力工程, 2011, 32(4): 118-121

    Liu Yang, Lin Xiaoling, Cai Qi. Calculation of radioactive inventory of activated parts for nuclear power unit and analysis of influence factors[J]. Nuclear Power Engineering, 2011, 32(4): 118-121
    [11] 王小胡, 胡一非, 李江波, 等. 退役反应堆放射性活化源项计算[J]. 原子能科学技术, 2014, 48(5): 893-897

    Wang Xiaohu, Hu Yifei, Li Jiangbo, et al. Calculation of radioactive activated source term for decommissioned reactor[J]. Atomic Energy Science and Technology, 2014, 48(5): 893-897
    [12] Hoogenboom J E, Martin W R, Petrovic B. Monte Carlo performance benchmark for detailed power density calculation in a full size reactor core[J]. Ann Arbor, 2011.
    [13] 佘顶, 王侃, 余纲林. 堆用蒙卡程序燃耗计算功能开发[J]. 核动力工程, 2012, 33(3): 1-5,11

    She Ding, Wang Kan, Yu Ganglin. Development of burnup calculation function in reactor Monte Carlo code RMC[J]. Nuclear Power Engineering, 2012, 33(3): 1-5,11
    [14] 苑旭东, 马辉强, 陈珍平, 等. 基于R2S方法的反应堆结构材料活化剂量计算研究[J]. 核动力工程, 2021, 42(5): 103-109

    Yuan Xudong, Ma Huiqiang, Chen Zhenping, et al. Study on activation-induced dose calculation of reactor structural materials[J]. Nuclear Power Engineering, 2021, 42(5): 103-109
    [15] 于虓, 张竞宇, 于珑选, 等. 基于运输和活化程序耦合的停堆剂量率计算[J]. 哈尔滨工程大学学报, 2024, 45(12): 2384-2390

    Yu Xiao, Zhang Jingyu, Yu Longxuan, et al. Shutdown dose rate calculation using transport and activation program coupling[J]. Journal of Harbin Engineering University, 2024, 45(12): 2384-2390
    [16] Wang Kan, Li Zeguang, She Ding, et al. RMC–a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [17] 苏耿华, 包鹏飞, 韩嵩, 等. 核电厂反应堆构件的退役活化源项计算[J]. 核动力工程, 2016, 37(5): 167-170

    Su Genghua, Bao Pengfei, Han Song, et al. Calculation of activation source terms of reactor components for decommissioned nuclear power plant[J]. Nuclear Power Engineering, 2016, 37(5): 167-170
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-31
  • 修回日期:  2025-08-29
  • 录用日期:  2025-08-29
  • 网络出版日期:  2025-09-01

目录

    /

    返回文章
    返回