留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向微型堆多物理耦合的MCNP连续型热中子截面在线产生技术

王立鹏 邹璟杰 赵若修 曹璐 姜夺玉 胡田亮 刘仕倡

王立鹏, 邹璟杰, 赵若修, 等. 面向微型堆多物理耦合的MCNP连续型热中子截面在线产生技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250254
引用本文: 王立鹏, 邹璟杰, 赵若修, 等. 面向微型堆多物理耦合的MCNP连续型热中子截面在线产生技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250254
Wang Lipeng, Zou Jingjie, Zhao Ruoxiu, et al. Technology on the on-the-fly generation of continuous thermal neutron scattering cross section in MCNP for microreactor multi-physics coupling[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250254
Citation: Wang Lipeng, Zou Jingjie, Zhao Ruoxiu, et al. Technology on the on-the-fly generation of continuous thermal neutron scattering cross section in MCNP for microreactor multi-physics coupling[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250254

面向微型堆多物理耦合的MCNP连续型热中子截面在线产生技术

doi: 10.11884/HPLPB202537.250254
基金项目: 国家自然科学基金项目(12275152、12205237)
详细信息
    作者简介:

    王立鹏,wang0214@126.com

  • 中图分类号: TL322

Technology on the on-the-fly generation of continuous thermal neutron scattering cross section in MCNP for microreactor multi-physics coupling

  • 摘要: 微型反应堆在运行过程中具有紧密耦合的核热力响应特征,温度分布具有较强的不均匀性,当堆芯温度发生变化时,需要在线生成不同温度的反应截面,以达到快速模拟截面温度反馈的效果。MCNP的在线多普勒展宽使用较为普遍,但是它只针对可分辨共振区,对于热谱型反应堆,无法在线考虑热中子散射截面受温度的影响,为此,本文进行了基于统计学抽样MCNP连续型热中子散射截面在线计算功能的开发,针对耐高温慢化剂材料ZrHx中的H开展了在线多温度点截面的计算研究,对比了离散和连续型热中子散射截面差异,完成了TRIGA和TOPAZ反应堆有效增值因数(keff)的宏观验证,并将其功能应用到非结构网格MCNP与ABAQUS铀氢锆燃料单栅元核热耦合分析中。结果表明,开发的MCNP在线热中子截面计算产生的keff与采用NJOY离线库计算的keff较为一致,结合MCNP的非结构网格输运功能,可以精细考虑慢化剂材料不同位置的温度反馈效应,为微型固态堆高效的多物理耦合计算奠定重要的基础。
  • 图  1  基于随机抽样原理的在线热化截面计算流程

    Figure  1.  On-the-fly thermal cross section calculation flow based on random sampling

    图  2  ZrHx中H的概率密度函数PDF和累计概率密度函数CDF分布

    Figure  2.  Probability density function (PDF) and cumulative distribution function (CDF) of H in ZrHx

    图  3  “Broomstick”问题示意图

    Figure  3.  Schematic diagram of the “Broomstick” problem

    图  4  次级散射中子的角度余弦分布和极角坐标分布

    Figure  4.  Angular cosine and polar angle distribution of secondary scattered neutrons

    图  5  次级散射中子的能量分布

    Figure  5.  Energy distribution of secondary scattered neutrons

    图  6  TRIGA反应堆径向和轴向截面图

    Figure  6.  Radial and axial cross-section of TRIGA reactor

    图  7  TOPAZ-II反应堆径向和轴向截面图

    Figure  7.  Radial and axial cross-sections of the TOPAZ-II reactor

    图  8  铀氢锆燃料栅元全反射模型

    Figure  8.  Reflective model of uranium zirconium hydrogen fuel pin

    图  9  全反射边界条件的铀氢锆燃料栅元归一化功率分布、统计偏差、实际功率分布和温度分布

    Figure  9.  Normalized power, std, power, and temperature distribution of uranium zirconium hydride fuel pin model

    表  1  基于ENDF/B VIII.0评价库加工的热化ACE格式截面库信息

    Table  1.   Information of ACE TSL Library Based on ENDF/ B VIII.0

    ACE Lib name temperature/K energy/MeV
    h-zrh.40t 296 2.551E-08
    h-zrh.41t 400 3.447E-08
    h-zrh.42t 500 4.309E-08
    h-zrh.43t 600 5.170E-08
    h-zrh.44t 700 6.032E-08
    h-zrh.45t 800 6.894E-08
    h-zrh.46t 1000 8.617E-08
    h-zrh.47t 1200 1.034E-07
    下载: 导出CSV

    表  2  TRIGA反应堆MCNP计算keff

    Table  2.   Calculation of MCNP in TRIGA Reactor

    temperature/K offline keff on-the-fly keff deviation//10−5 offline libraries’ temperature/K
    400 0.99744 0.99671 73 293, 500
    600 0.98422 0.98336 86 500, 700
    800 0.96978 0.97060 82 700, 1000
    1000 0.95574 0.95649 75 800, 1200
    下载: 导出CSV

    表  3  TOPAZ-II反应堆MCNP计算keff偏差

    Table  3.   Calculation of keff Deviation in MCNP of TOPAZ-II Reactor

    temperature/Koffline keffon-the-fly keffdeviation/10−5offline libraries’ temp/K
    4001.001161.0012610293、500
    6001.019241.0187450500、700
    8001.032261.0316957700、1000
    10001.043701.04166204800、1200
    下载: 导出CSV

    表  4  全反射边界条件的铀氢锆燃料栅元模型keff结果

    Table  4.   keff results of reflective model of uranium zirconium hydrogen fuel pin

    model time/min keff deviation/10−5
    CSG 1.74 1.46502
    UM(single cell) 17.11 1.46259 243
    UM(4 256 hypermesh cell) 65.96 1.46257 245
    下载: 导出CSV

    表  5  铀氢锆燃料反应性反馈

    Table  5.   Reactivity Feedback of UZrH Fuel

    calculation keff computing time/min Δρ/10−5
    cold state (300 K) 1.46257 65.77
    hot state with free gas model 1.46055 65.80 −765
    hot sate with on-the-fly TSL xs by statistical sampling 1.45290 68.78 −967
    下载: 导出CSV
  • [1] Mehta V K. Capturing multiphysics effects in hydride moderated microreactors using MCNP and ABAQUS[R]. LA-UR-21-20451, Los Alamos National Laboratory, 2021.
    [2] Martz R L. The MCNP6 book on unstructured mesh geometry: user’s guide[R]. LA-UR-11-05668 Rev. 8, MCNP6 code release to RSICC, Oak Ridge, TN and general distribution, 2014.
    [3] 王立鹏, 孔令体, 姜夺玉, 等. 基于经典分子动力学模拟的热中子散射数据产生方法[J]. 现代应用物理, 2025, 16: 020203 doi: 10.12061/j.issn.2095-6223.202407039

    Wang Lipeng, Kong Lingti, Jiang Duoyu, et al. Thermal neutron scattering data generation method based on classical molecular dynamics simulations[J]. Modern Applied Physics, 2025, 16: 020203 doi: 10.12061/j.issn.2095-6223.202407039
    [4] Brown B A, Chadwick M B, Capote R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [5] Macfarlane R, Muir D W, Boicourt R M, et al. The NJOY nuclear data processing system, Version 2016[R]. Los Alamos: Los Alamos National Laboratory, 2017.
    [6] Brown F B. The makxsf code with Doppler broadening[R]. Los Alamos: Los Alamos National Laboratory, 2006.
    [7] Viitanen T, Leppänen J. New interpolation capabilities for thermal scattering data in serpent 2[C]//Proceedings of the PHYSOR 2016: Unifying Theory and Experiments in the 21st Century. 2016.
    [8] Pavlou A T, Ji Wei. On-the-fly sampling of temperature-dependent thermal neutron scattering data for Monte Carlo simulations[J]. Annals of Nuclear Energy, 2014, 71: 411-426. doi: 10.1016/j.anucene.2014.04.028
    [9] 王立鹏, 陈森, 张信一, 等. 基于非结构网格粒子输运的蒙特卡罗模拟计算研究[J]. 核科学与工程, 2024, 44(2): 286-294 doi: 10.3969/j.issn.0258-0918.2024.02.005

    Wang Lipeng, Chen Sen, Zhang Xinyi, et al. Study on the particle transport calculation with Monte Carlo Method based on unstructured grid[J]. Nuclear Science and Engineering, 2024, 44(2): 286-294 doi: 10.3969/j.issn.0258-0918.2024.02.005
    [10] 王立鹏, 曹璐, 余小任, 等. 基于直接CAD几何模型的辐射场生成技术研究及应用[J]. 现代应用物理, 2024, 15: 030201 doi: 10.12061/j.issn.2095-6223.2024.030201

    Wang Lipeng, Cao Lu, Yu Xiaoren, et al. Research and application of radiation field generation technology based on direct CAD geometric model[J]. Modern Applied Physics, 2024, 15: 030201 doi: 10.12061/j.issn.2095-6223.2024.030201
    [11] 王立鹏, 曹璐, 陈森, 等. 基于非结构网格MCNP的KRUSTY热膨胀负反馈计算研究[J]. 核动力工程, 2023, 43(6): 45-53

    Wang Lipeng, Cao Lu, Chen Sen, et al. Study of KRUSTY thermal expansion negative feedback calculation based on unstructured-mesh MCNP[J]. Nuclear Power Engineering, 2023, 43(6): 45-53
    [12] Cullen D E, Hansen L F, Lent E M, et al. Thermal scattering law data: implementation and testing using the Monte Carlo neutron transport codes COG, MCNP and TART[R]. Laboratory: Lawrence Livermore National Laboratory, 2003.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-09
  • 修回日期:  2025-09-02
  • 录用日期:  2025-09-02
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回