留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rhodotron加速器工业CT检测高密度工件的高分辨重建算法研究

李奉笑 杨润 孙志强 钟国威 刘成峰 何小中 阳庆国 周日峰

李奉笑, 杨润, 孙志强, 等. Rhodotron加速器工业CT检测高密度工件的高分辨重建算法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250263
引用本文: 李奉笑, 杨润, 孙志强, 等. Rhodotron加速器工业CT检测高密度工件的高分辨重建算法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250263
Li Fengxiao, Yang Run, Sun Zhiqiang, et al. High-resolution reconstruction algorithm for high-density workpiece inspection in rhodotron-based industrial CT[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250263
Citation: Li Fengxiao, Yang Run, Sun Zhiqiang, et al. High-resolution reconstruction algorithm for high-density workpiece inspection in rhodotron-based industrial CT[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250263

Rhodotron加速器工业CT检测高密度工件的高分辨重建算法研究

doi: 10.11884/HPLPB202537.250263
基金项目: 国家自然科学基金重大科研仪器研制项目(11827809);冲击波物理与爆轰物理全国重点实验室基金项目(2024CXPJGFJJ06411)
详细信息
    作者简介:

    李奉笑,lfx@cqu.edu.cn

    通讯作者:

    周日峰,zhou65112401@cqu.edu.cn

  • 中图分类号: TP391

High-resolution reconstruction algorithm for high-density workpiece inspection in rhodotron-based industrial CT

  • 摘要: Rhodotron加速器因其微焦点特性,为工业计算机断层扫描(CT)系统实现高空间分辨率检测提供了硬件基础。然而,在检测航空航天等领域常用的高密度、大尺寸工件时,X射线的强衰减会导致投影数据信噪比严重降低,常规重建算法难以兼顾噪声抑制与细节保持,限制了系统分辨能力的发挥。针对此问题,旨在提出一种能够在强噪声背景下实现高保真重建的算法。本研究提出一种基于双边总变分正则化凸集投影(POCS-BTV)的高分辨迭代重建算法。该算法在POCS框架内,创新性地引入具有优越边缘保持能力的BTV作为正则项,通过迭代优化有效分离图像结构与噪声。通过仿真实验和基于Rhodotron加速器CT系统的实际物理模体实验对算法性能进行验证,并与SIRT、POCS-TV及POCS-RTV等算法进行对比。仿真实验结果表明,所提POCS-BTV算法重建的Shepp-Logan头模图像峰值信噪比(PSNR)达到30.76,结构相似性(SSIM)为0.8405,在各项评价指标上均表现出显著优势。针对直径70 mm高强度钢丝缆绳模体的实际数据重建,POCS-BTV算法的重建图像能够清晰分辨钢丝间的微小缝隙,有效避免了其他算法中出现的结构混叠与边缘模糊现象。研究证实,POCS-BTV算法能充分利用Rhodotron加速器的硬件优势,在强噪声背景下实现高密度工件内部微观结构的高分辨、高保真重建,为关键工业部件的精密无损检测提供了可靠的解决方案。
  • 图  1  Rhodotron加速器示意图

    Figure  1.  Schematic diagram of the Rhodotron accelerator

    图  2  RTV和BTV对图像结构边缘影响对比

    Figure  2.  Comparison of the impact of RTV and BTV on image structural edges

    图  3  Shepp-Logan头模原始图像与各算法重建图像

    Figure  3.  Shepp-Logan head mode original image and each algorithm reconstruction image

    图  4  不同算法重建图像的灰度变化曲线

    Figure  4.  Gray-scale change curves of images reconstructed by different algorithms

    图  5  高强度钢丝缆绳模体实物图

    Figure  5.  Physical image of high strength steel wire cable mold

    图  6  不同重建算法的CT图像及其ROI图像

    Figure  6.  CT images and ROI images of different reconstruction algorithms

    图  7  Rhodotron加速器与常规电子直线加速器的CT重建结果对比

    Figure  7.  Comparison of CT reconstruction results between the Rhodotron accelerator and a conventional electron linear accelerator

    表  1  POCS-BTV重建算法主要步骤

    Table  1.   The main steps of the POCS-BTV reconstruction algorithm

    No. main steps detailed process
    set initial reconstruction
    parameters
    Projection data g, initial value of reconstructed image ${{\boldsymbol{f}}^{\left( 0 \right)}}$, number of iterations ${N_{{\mathrm{iteration}}}}$, number of BTV iterations ${N_{{\mathrm{BTV}}}}$, number of BTV inner iterations tmax, stability parameter $ \zeta $, regularization parameter $\lambda $, spatial weighting parameter ${\delta _k}$, intensity weighting parameter ${\delta _r}$.
    POCS reconstruction Obtain intermediate image ${{\boldsymbol{f}}^{\left( {n + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}} \right)}}$ using Eq. (10) based on projection data and current initial iteration value.
    BTV regularization Apply regularization constraints to intermediate image ${{\boldsymbol{f}}^{\left( {n + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}} \right)}}$ using Eq. (16) to obtain reconstructed image $ {{\boldsymbol{f}}^{\left( {n + 1} \right)}} $.
    termination check If stopping criteria are satisfied (reaching maximum iterations ${N_{{\mathrm{BTV}}}}$), output reconstructed image $ {{\boldsymbol{f}}^{\left( {n + 1} \right)}} $; Otherwise, set result as new initial value and continue iteration.
    下载: 导出CSV

    表  2  Rhodotron加速器CT仿真扫描参数

    Table  2.   CT simulation scanning parameters of the Rhodotron accelerator

    distance from radiation source to
    rotation center/mm
    distance from radiation source
    to detector/mm
    number of scanning
    divisions
    number of detector
    units
    detector pixel
    width/mm
    75 1800 1200 2000 0.139
    下载: 导出CSV

    表  3  不同重建算法的定量评价指标结果

    Table  3.   Quantitative evaluation index results of different reconstruction algorithms

    algorithmsPSNR↑SSIM↑NMSE↓FSIM↑
    SIRT20.680.11210.07580.6391
    POCS-TV28.870.67880.01150.9565
    POCS-RTV28.970.79580.01120.9715
    POCS-BTV30.760.84050.00740.9707
    下载: 导出CSV

    表  4  高强度钢丝缆绳模体的Rhodotron加速器CT扫描参数

    Table  4.   CT scanning parameters of high strength steel wire cable mold by Rhodotron accelerator

    number of scanning
    divisions
    distance from radiation source
    to rotation center/mm
    distance from radiation source
    to detector/mm
    number of detector
    units
    detector pixel
    width/mm
    1200 985 3940 4256 0.139
    下载: 导出CSV
  • [1] Withers P J, Bouman C, Carmignato S, et al. X-ray computed tomography[J]. Nature Reviews Methods Primers, 2021, 1: 18. doi: 10.1038/s43586-021-00015-4
    [2] He Xiaozhong, Liao Shuqing, Long Jidong, et al. A proposal of using improved Rhodotron as a high dose rate micro-focused X-ray source[C]//Proceedings of the 13th Symposium on Accelerator Physics (SAP 17). 2017: 28-30.
    [3] He Xiaozhong, Yang Liu, Liao Shuqing, et al. Rhodotron and rotating target: a solution towards micro-spot for high energy and high dose rate bremsstrahlung sources[J]. Applied Radiation and Isotopes, 2022, 189: 110446. doi: 10.1016/j.apradiso.2022.110446
    [4] Balda M, Hornegger J, Heismann B. Ray contribution masks for structure adaptive sinogram filtering[J]. IEEE Transactions on Medical Imaging, 2012, 31(6): 1228-1239. doi: 10.1109/TMI.2012.2187213
    [5] Xie Q, Zeng D, Zhao Q, et al. Robust low-dose CT sinogram preprocessing via exploiting noise-generating mechanism[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2487-2498. doi: 10.1109/TMI.2017.2767290
    [6] Gui Zhiguo, Liu Yi. Noise reduction for low-dose X-ray computed tomography with fuzzy filter[J]. Optik, 2012, 123(13): 1207-1211. doi: 10.1016/j.ijleo.2011.07.052
    [7] 蔡玉芳, 陈桃艳, 王珏, 等. 基于自适应滤波系数的非局部均值计算机层析成像的图像降噪方法[J]. 光学学报, 2020, 40: 071001

    Cai Yufang, Chen Taoyan, Wang Jue, et al. Image noise reduction in computed tomography with non-local means algorithm based on adaptive filtering coefficients[J]. Acta Optica Sinica, 2020, 40: 071001
    [8] 龙超, 金恒, 黎玲, 等. 基于特征融合的非局部均值CT图像降噪[J]. 光学学报, 2022, 42: 1134024 doi: 10.3788/AOS202242.1134024

    Long Chao, Jin Heng, Li Ling, et al. CT image denoising with non-local means based on feature fusion[J]. Acta Optica Sinica, 2022, 42: 1134024 doi: 10.3788/AOS202242.1134024
    [9] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [10] Zhong Hua, Ma Ke, Zhou Yang. Modified BM3D algorithm for image denoising using nonlocal centralization prior[J]. Signal Processing, 2015, 106: 342-347. doi: 10.1016/j.sigpro.2014.08.014
    [11] Sidky E Y, Pan Xiaochuan. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777-4807.
    [12] Sidky E Y, Duchin Y, Pan Xiaochuan, et al. A constrained, total-variation minimization algorithm for low-intensity X-ray CT[J]. Medical Physics, 2011, 38(S1): S117-S125. doi: 10.1118/1.3560887
    [13] Xu Li, Yan Qiong, Xia Yan, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31: 139.
    [14] Gong Changcheng, Zeng Li. Adaptive iterative reconstruction based on relative total variation for low-intensity computed tomography[J]. Signal Processing, 2019, 165: 149-162. doi: 10.1016/j.sigpro.2019.06.031
    [15] He Lei, Xie Yongfang, Xie Shiwen, et al. Structure-preserving texture smoothing via scale-aware bilateral total variation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(4): 1493-1506. doi: 10.1109/TCSVT.2022.3214219
    [16] Chen Hongchi, Li Qiuxia, Zhou Lazhen, et al. Deep learning-based algorithms for low-dose CT imaging: a review[J]. European Journal of Radiology, 2024, 172: 111355. doi: 10.1016/j.ejrad.2024.111355
    [17] Ma Limin, Yao Yudong, Teng Yueyang. Iterator-net: sinogram-based CT image reconstruction[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13050-13061. doi: 10.3934/mbe.2022609
    [18] Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting[J]. Multiscale Modeling & Simulation, 2005, 4(4): 1168-1200.
    [19] Hale E T, Yin Wotao, Zhang Yin. Fixed-point continuation for 1-minimization: methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19(3): 1107-1130. doi: 10.1137/070698920
    [20] Tian Zhen, Jia Xun, Yuan Kehong, et al. Low-dose CT reconstruction via edge-preserving total variation regularization[J]. Physics in Medicine & Biology, 2011, 56(18): 5949-5967.
    [21] Krishnan D, Szeliski R. Multigrid and multilevel preconditioners for computational photography[J]. ACM Transactions on Graphics (TOG), 2011, 30(6): 1-10.
    [22] Liu Yan, Ma Jianhua, Fan Yi, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction[J]. Physics in Medicine & Biology, 2012, 57(23): 7923-7956.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 修回日期:  2025-10-11
  • 录用日期:  2025-10-08
  • 网络出版日期:  2025-10-23

目录

    /

    返回文章
    返回