留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SRAM在轨监测的单粒子翻转事件特征与空间环境响应关系研究

徐小恒 马英起 张龙龙 王杰义 林刘亮 杨丹丹

徐小恒, 马英起, 张龙龙, 等. 基于SRAM在轨监测的单粒子翻转事件特征与空间环境响应关系研究[J]. 强激光与粒子束, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269
引用本文: 徐小恒, 马英起, 张龙龙, 等. 基于SRAM在轨监测的单粒子翻转事件特征与空间环境响应关系研究[J]. 强激光与粒子束, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269
Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment[J]. High Power Laser and Particle Beams, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269
Citation: Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment[J]. High Power Laser and Particle Beams, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269

基于SRAM在轨监测的单粒子翻转事件特征与空间环境响应关系研究

doi: 10.11884/HPLPB202537.250269
基金项目: 中国科学院B类先导专项(XDB1200200);国家自然科学基金项目(U2241280);中国科学院青年创新促进会优秀会员人才基金项目(Y2022057);太阳活动与空间天气全国重点实验室专项基金资助项目(E52621A0);北京市自然科学基金项目(L252102)
详细信息
    作者简介:

    徐小恒,xuxiaoheng@nssc.ac.cn

    通讯作者:

    马英起,myq@nssc.ac.cn

  • 中图分类号: P353.4

Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment

  • 摘要: 空间辐射环境对航天电子器件的可靠性影响显著,其中单粒子翻转(Single Event Upset, SEU)是最具代表性的瞬态辐射效应之一。基于在轨静态随机存取存储器(SRAM)SEU监测数据,系统分析了SEU与空间环境参数的相关性。结果表明,97.5%的SEU事件集中发生在南大西洋异常区(SAA),并在磁壳层L≈1.24~1.25处出现峰值,其空间分布与≥10 MeV质子通量增强区高度一致。≥10 MeV质子通量与在轨软错误率(SER)呈显著幂律正相关(R≈0.73),表明高能质子是驱动SEU的主要因素。基于地面质子辐照试验截面和在轨能谱估算的理论SER与观测值在1个数量级内一致,但整体偏低,需扩展能谱范围以提高预测精度。在轨期间经历的3次小型太阳质子事件均未触发SEU,而地磁暴期间Dst指数下降伴随SER显著降低,表明地磁暴引发SAA区域质子通量衰减使得SEU发生频率降低。研究结果揭示了在轨SRAM器件SEU的空间分布规律及其驱动机理,为辐射效应建模、抗辐射设计和任务可靠性评估提供参考。
  • 图  1  (a)轨道≥10 MeV平均质子通量(包含异常值);(b) 2023年1月3日日平均≥10 MeV质子通量(异常值);(c)轨道≥10 MeV平均质子通量(剔除异常值);(d) SEU地理分布

    Figure  1.  (a) Orbit-averaged ≥10 MeV proton flux (including outliers), (b) daily-averaged ≥10 MeV proton flux on January 3, 2023 (outliers), (c) orbit-averaged ≥10 MeV proton flux (outliers removed), (d) geographic distribution of single-event upsets

    图  2  (a)不同L位置的质子通量(平均值);(b)不同L位置的质子通量(中位值);(c)不同L位置的SEU数量;(d)不同L位置的在轨SER

    Figure  2.  (a) Proton flux (average) at different L-shell values; (b) proton flux (median) at different L-shell values; (c) number of single event upsets at different L-shell values; (d) SER at different L-shell values

    图  3  4-Mb AT60142HT SRAM SEU截面与质子能量的函数关系(数据源自文献[33])

    Figure  3.  SEU cross section of 4-Mb AT60142HT SRAM as a function of proton energy (data from Ref [33])

    图  4  (a)不同磁壳层L位置质子通量(平均值)与在轨SER的相关性;(b)不同磁壳层L位置质子通量(中位值)与在轨SER的相关性

    Figure  4.  (a) Correlation between average proton flux and SER at different L-shell values; (b) Correlation between median proton flux and SER at different L-shell values

    图  5  2023-02-25日太阳质子事件期间SRAM观测到的质子通量和SEU发生的经度和纬度位置以及对应的SER值

    Figure  5.  Proton flux, SEU locations (longitude and latitude), and corresponding SER values observed by the CZ-4C platform during the solar proton event on February 25, 2023

    图  6  地磁指数Dst与在轨错误率的散点分布图(红色曲线为对应Dst指数的在轨SER的平均值,误差棒为标准差)

    Figure  6.  Scatter plot of the Dst index versus SER (The red curve represents the average SER corresponding to each Dst index, with error bars indicating the standard deviation.)

    表  1  在轨期间(SRAM开机)经历的太阳质子事件

    Table  1.   Solar proton events encountered during on-orbit operation (with SRAM powered on)

    No. start time (UT) maximum time (UT) proton flux/(pfu @ >10 MeV)
    1 2022-08-27 11:55 2022-08-27 12:20 27
    2 2023-02-25 21:10 2023-02-26 04:40 58
    3 2023-03-13 07:35 2023-03-15 04:25 22
    下载: 导出CSV
  • [1] 沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606

    Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-Ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606
    [2] Aguiar Y Q D, Wrobel F, Autran J L, et al. Introduction to single-event effects[M]//De Aguiar Y Q, Wrobel F, Autran J L, et al. Single-Event Effects, from Space to Accelerator Environments: Analysis, Prediction and Hardening by Design. Cham: Springer, 2025: 29-47.
    [3] Duzellier S. Radiation effects on electronic devices in space[J]. Aerospace Science and Technology, 2005, 9(1): 93-99. doi: 10.1016/j.ast.2004.08.006
    [4] 张艳文, 郭刚, 韩金华, 等. 质子单粒子试验技术及其应用[J]. 现代应用物理, 2024, 15: 040417

    Zhang Yanwen, Guo Gang, Han Jinhua, et al. Proton single event effect testing technology and its application[J]. Modern Applied Physics, 2024, 15: 040417
    [5] 沈志强, 刘剑利, 陈启明, 等. 300 MeV质子重离子加速器及电子器件单粒子效应试验研究[J]. 现代应用物理, 2024, 15: 040418 doi: 10.12061/j.issn.2095-6223.2024.040418

    Shen Zhiqiang, Liu Jianli, Chen Qiming, et al. 300 MeV proton and heavy ion accelerator and single event effects of electronic devices[J]. Modern Applied Physics, 2024, 15: 040418 doi: 10.12061/j.issn.2095-6223.2024.040418
    [6] Ma Y Q, Yu T, Xu X H, et al. Comparative study of the single-event functional interrupt (SEFI) rate in solid-state drives (SSD) through ground and on-orbit testing[J]. Space Weather, 2025, 23: e2025SW004414. doi: 10.1029/2025SW004414
    [7] Leach R. Spacecraft system failures and anomalies attributed to the natural space environment[C]//Space Programs and Technologies Conference. 1995.
    [8] 王长河. 单粒子效应对卫星空间运行可靠性影响[J]. 半导体情报, 1998, 35(1): 1-8

    Wang Changhe. The influence with reliability of motional satelliteby the single -event phenomena[J]. Semiconductor Information, 1998, 35(1): 1-8
    [9] Ji Xinyan, Li Yunze, Liu Guoqing, et al. A brief review of ground and flight failures of Chinese spacecraft[J]. Progress in Aerospace Sciences, 2019, 107: 19-29. doi: 10.1016/j.paerosci.2019.04.002
    [10] 韩建伟, 陈睿, 李宏伟, 等. 单粒子效应及充放电效应诱发航天器故障的甄别与机理探讨[J]. 航天器环境工程, 2021, 38(3): 344-350

    Han Jianwei, Chen Rui, Li Hongwei, et al. The anomalies supposed to be due to the single event effects may be caused by spacecraft charging induced electrostatic discharge[J]. Spacecraft Environment Engineering, 2021, 38(3): 344-350
    [11] 周飞, 李强, 信太林, 等. 空间辐射环境引起在轨卫星故障分析与加固对策[J]. 航天器环境工程, 2012, 29(4): 392-396

    Zhou Fei, Li Qiang, Xin Tailin, et al. Analyses and countermeasures of in-orbit satellite failures caused by space radiation environment[J]. Spacecraft Environment Engineering, 2012, 29(4): 392-396
    [12] Harrington R C, Kauppila J S, Warren K M, et al. Estimating single-event logic cross sections in advanced technologies[J]. IEEE Transactions on Nuclear Science, 2017, 64(8): 2115-2121.
    [13] 尚琳, 刘晓娜, 曹彩霞, 等. 低轨互联网卫星在轨单粒子翻转分析及防护措施[J]. 航天器环境工程, 2021, 38(5): 503-507

    Shang Lin, Liu Xiaona, Cao Caixia, et al. Analysis of in-orbit single event upset of low-Earth-orbit internet satellite and protection measures[J]. Spacecraft Environment Engineering, 2021, 38(5): 503-507
    [14] Mai Ziqi, Zhu Xiang, Li Hongwei, et al. Experiment study of single event functional interrupt in analog-to-digital converters using a pulsed laser[J]. Electronics, 2023, 12: 2774. doi: 10.3390/electronics12132774
    [15] Chen Junchao, Lange T, Andjelkovic M, et al. Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 564-580.
    [16] Kottaras G, Sarris T, Psomoulis A, et al. A low-power, radiation-hardened single event effect rate detection system on a chip for real time monitoring of single event effects on low earth orbit satellites[C]//2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC). 2022: 1-6.
    [17] 马英起, 朱翔, 李宏伟, 等. 空间辐射环境危害综合监测原理样机研制[J]. 航天器环境工程, 2019, 36(1): 89-94 doi: 10.12126/see.2019.01.014

    Ma Yingqi, Zhu Xiang, Li Hongwei, et al. Development of a space radiation hazard monitor[J]. Spacecraft Environment Engineering, 2019, 36(1): 89-94 doi: 10.12126/see.2019.01.014
    [18] Zhang Binquan, Zhang Shenyi, Shen Guohong, et al. Monitor of the single event upsets and linear energy transfer of space radiation on the Beidou navigation satellites[J]. Open Astronomy, 2023, 32: 20220206. doi: 10.1515/astro-2022-0206
    [19] Noeldeke C, Boettcher M, Mohr U, et al. Single event upset investigations on the “Flying Laptop” satellite mission[J]. Advances in Space Research, 2021, 67(6): 2000-2009. doi: 10.1016/j.asr.2020.12.032
    [20] Katz S, Goldvais U, Price C. The connection between space weather and Single Event Upsets in polar low earth orbit satellites[J]. Advances in Space Research, 2021, 67(10): 3237-3249. doi: 10.1016/j.asr.2021.02.007
    [21] 侯建文, 张爱兵, 郑香脂, 等. FPGA单粒子翻转事件在轨探测研究[J]. 宇航学报, 2014, 35(4): 454-458

    Hou Jianwen, Zhang Aibing, Zheng Xiangzhi, et al. Research on in-orbit detection of SEU of FPGA[J]. Journal of Astronautics, 2014, 35(4): 454-458
    [22] Hansen D L, Resor S, Vermeire B, et al. Comparison of figure of merit calculations to on-orbit data[C]//2023 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2023 NSREC). 2023: 1-8.
    [23] Wrobel F, Aguiar Y, Marques C, et al. An analytical approach to calculate soft error rate induced by atmospheric neutrons[J]. Electronics, 2023, 12(1): 104.
    [24] He Wei, Li Jing, Zhou Yimin, et al. Study on an estimation method of on-orbit single event upset rate based on historical data[C]//2021 IEEE 4th International Conference on Electronics Technology (ICET). 2021: 1342-1346.
    [25] Slayman C. JEDEC standards on measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors[M]//Nicolaidis M. Soft Errors in Modern Electronic Systems. New York: Springer, 2011: 55-76.
    [26] 张付强, 郭刚, 覃英参, 等. 质子单粒子效应引发卫星典型轨道下SRAM在轨错误率分析[J]. 航天器环境工程, 2018, 35(4): 365-370 doi: 10.12126/j.issn.1673-1379.2018.04.010

    Zhang Fuqiang, Guo Gang, Qin Yingcan, et al. Prediction of proton-induced single event effect on SRAM’s in-orbit soft error rate on typical satellite orbit[J]. Spacecraft Environment Engineering, 2018, 35(4): 365-370 doi: 10.12126/j.issn.1673-1379.2018.04.010
    [27] 王会斌, 呼延奇, 郑悦, 等. 航天器空间辐射效应分析技术现状与思考[J]. 航天器环境工程, 2022, 39(4): 427-435 doi: 10.12126/see.2022.04.015

    Wang Huibin, Hu Yanqi, Zheng Yue, et al. The present situation of technologies for analysis of space radiation effects to spacecraft and some retrospection[J]. Spacecraft Environment Engineering, 2022, 39(4): 427-435 doi: 10.12126/see.2022.04.015
    [28] 沈国红, 常峥, 张焕新, 等. 太阳同步轨道粒子辐射效应综合探测技术[J]. 北京大学学报自然科学版, 2025, 61(2): 379-387

    Shen Guohong, Chang Zheng, Zhang Huanxin, et al. Comprehensive detection technology of particle radiation effects in solar synchronous orbit[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2025, 61(2): 379-387
    [29] Shen Guohong, Chang Zheng, Zhang Huanxin, et al. Comprehensive detection of particle radiation effects on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket[J]. Atmosphere, 2024, 15: 705. doi: 10.3390/atmos15060705
    [30] Wang Jieyi, Zhang Huanxin, Zhu Xinyu, et al. Analyzing measured evidence for inducing factors of SEU from in-flight data of NSSC-SPRECMI on OPUS CZ-4C[J]. IEEE Transactions on Nuclear Science, 2025, 72(2): 101-109. doi: 10.1109/TNS.2024.3522366
    [31] Poivey C, Harboe-Sørensen R, Pinto M, et al. SEL and SEU in-flight data from memories on-board PROBA-II spacecraft[C]//2022 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2022 NSREC). 2022: 1-6.
    [32] Quinn H, Graham P, Morgan K, et al. Flight experience of the Xilinx virtex-4[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2682-2690. doi: 10.1109/TNS.2013.2246581
    [33] Pinto M, Sampaio J M, Arruda L, et al. CTTB memory test board single event effect geostationary in-flight data analysis[C]//2020 20th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2020: 1-6.
    [34] 国家卫星气象中心. 地磁暴强度等级[P]. 2015

    National Satellite Meteorological Center. Classification of geomagnetic storm intensity[P]. 2015
    [35] Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Dynamics of proton flux in the South Atlantic anomaly during the super geomagnetic storm in May 2024[J]. Journal of Geophysical Research: Space Physics, 2025, 130: e2024JA033536. doi: 10.1029/2024JA033536
    [36] Zou Hong, Li Chenfang, Zong Qiugang, et al. Short-term variations of the inner radiation belt in the South Atlantic anomaly[J]. Journal of Geophysical Research: Space Physics, 2015, 120(6): 4475-4486. doi: 10.1002/2015JA021312
    [37] 陈洋, 邹鸿, 陈鸿飞, 等. 暴时内辐射带高能质子的损失和恢复机制探究[J]. 地球物理学报, 2016, 59(7): 2344-2355 doi: 10.6038/cjg20160702

    Chen Yang, Zou Hong, Chen Hongfei, et al. Study on the loss and recovery mechanisms of high-energy protons in the inner radiation belt during geomagnetic storms[J]. Chinese Journal of Geophysics, 2016, 59(7): 2344-2355 doi: 10.6038/cjg20160702
    [38] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [39] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  19
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-26
  • 修回日期:  2025-09-13
  • 录用日期:  2025-09-13
  • 网络出版日期:  2025-09-20
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回