留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波双频反射阵列天线相位综合方法

张长文 魏来 赵金峰 廉力影 张家豪 李夏 许亮

张长文, 魏来, 赵金峰, 等. 高功率微波双频反射阵列天线相位综合方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250271
引用本文: 张长文, 魏来, 赵金峰, 等. 高功率微波双频反射阵列天线相位综合方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250271
Zhang Changwen, Wei Lai, Zhao Jinfeng, et al. Phase synthesis method for high-power microwave dual frequency reflectarray antennas[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250271
Citation: Zhang Changwen, Wei Lai, Zhao Jinfeng, et al. Phase synthesis method for high-power microwave dual frequency reflectarray antennas[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250271

高功率微波双频反射阵列天线相位综合方法

doi: 10.11884/HPLPB202537.250271
详细信息
    作者简介:

    张长文,18802002366@139.com

    通讯作者:

    魏 来,wbxkyjs@163.com

    许 亮,784151904@163.com

  • 中图分类号: TN82

Phase synthesis method for high-power microwave dual frequency reflectarray antennas

  • 摘要: 基于反射阵列天线基础理论并利用参考相位优化方法,提出了一种适用于高功率微波双频反射阵列天线的相位综合方法。该方法充分考虑天线单元在不同入射波角度下的反射相位状态、电场强度以及与结构参数之间的对应关系,并进一步引入了筛选阈值的概念以提升系统功率容量,同时通过参考相位优选来缓解因筛选阈值而丢失掉小部分相移曲线引起的口径效率降低。该方法能够简化双频反射阵列天线流程并有效提升天线性能。为了验证方法的正确性,设计了一种多方框形状的改进型反射阵列天线单元,并用所提出方法开展双频反射阵列天线设计。该27×27单元阵列的工作频率为4.3 GHz和10 GHz,口径效率分别达到了67.37%和48.69%,真空中的功率容量达到数百兆瓦,有效验证了所提出相位综合方法的适用性。
  • 图  1  笛卡尔坐标系下典型反射阵列天线模型

    Figure  1.  Typical model of reflect array antenna in Cartesian coordinate system

    图  2  改进型多方框高功率微波反射阵单元结构示意图

    Figure  2.  Configuration of the improved multi-frame high-power microwave reflectarray antenna element

    图  3  不同θm条件下多方框单元的电场分布曲线和相移曲线

    Figure  3.  E-field distribution curves and phase shift curves under different θm conditions

    图  4  馈源天线和反射阵列天线构型

    Figure  4.  Configuration of the feed antenna and the reflectarray antenna

    图  5  遗传算法所得综合相位误差

    Figure  5.  Overall phase error obtained by genetic algorithm

    图  6  理论计算和实际量化相位分布

    Figure  6.  Theoretical and Quantified phase distribution

    图  7  全波仿真和数值计算二维辐射方向图

    Figure  7.  Radiation patterns of full wave simulation and numerical calculation

    图  8  反射阵列天线口径面电场分布情况

    Figure  8.  E-field distribution on the aperture of reflect array

    图  9  反射阵列天线口径面电场分布情况和天线仿真增益

    Figure  9.  E-field distribution on the aperture of reflect array and simulated antenna gain

    表  1  改进型多方框反射阵单元结构参数

    Table  1.   Geometry Parameters of the improved multi-frame reflectarray antenna element (mm)

    t1 t2 w1 w2 l3 P h b1
    3 2 0.8 1 4.5 22 3 0.4
    下载: 导出CSV

    表  2  所提出反射阵列天线与同类参考文献对比

    Table  2.   Comparison of the proposed reflect array antenna with relevant references

    antenna type element type phase shift
    type
    operating
    frequency/GHz
    cross-section
    dimensions/mm
    aperture
    efficiency/%
    power handling
    capacity/(MW/m2)
    C/X-band dual-frequency elliptical patch reflector array antenna[8] single-layer microstrip rotary phase shift technology 6.2/9.3 < 2.5 51.8/42 85.7/32.8
    C/X-band dual-frequency nested elliptical reflector array antenna[9] single-layer microstrip rotary phase shift technology 4.3/10.4 < 3 40.2/40.5 65/76.3
    All-Metal X/Ku dual-band reflector array antenna[17] single-layer
    all-metal
    variable-size phase shift technology 10/15 < 5.5 51.1/51.3 N/A
    X/Ka dual-band dual-layer microstrip reflector array antenna[18] double-layer microstrip rotary phase shift technology 8.7/32.2 < 5 55.4/47.7 N/A
    this paper single-layer
    all-metal
    variable-size phase shift technology 4.3/10 < 8 67.37/48.69 455.8/790
    下载: 导出CSV
  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015.
    [2] Benford J. Space applications of high-power microwaves[J]. IEEE Transactions on Plasma Science, 2008, 36(3): 569-581. doi: 10.1109/TPS.2008.923760
    [3] 李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125

    Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125
    [4] Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781
    [5] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256.
    [6] Zhao Xuhao, Xu Liang, Zhang Jiande, et al. A dielectric embedded reflectarray for high-power microwave application[J]. Review of Scientific Instruments, 2022, 93: 064703. doi: 10.1063/5.0091106
    [7] Xu Liang, Yuan Chengwei, Zhang Qiang, et al. Design and experiments of a beam-steerable wideband reflectarray antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1955-1959. doi: 10.1109/TAP.2022.3232750
    [8] Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823
    [9] 陈瑞, 李相强, 张健穹, 等. 高功率宽频比C/X双频反射阵列天线设计[J]. 强激光与粒子束, 2023, 35: 063002

    Chen Rui, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power wide frequency ratio C/X dual -band reflectarray antenna[J]. High Power Laser and Particle Beams, 2023, 35: 063002
    [10] 赵旭浩, 毕绍锋, 张建德, 等. 伸缩式全金属反射阵列扫描天线[J]. 强激光与粒子束, 2022, 34: 043004

    Zhao Xuhao, Bi Shaofeng, Zhang Jiande, et al. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34: 043004
    [11] Bi Shaofeng, Xu Liang, Cheng Xiaoyu, et al. An all-metal, simple-structured reflectarray antenna with 2-D beam-steerable capability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 129-133. doi: 10.1109/LAWP.2022.3204617
    [12] Mao Yilin, Xu Shenheng, Yang Fan, et al. A novel phase synthesis approach for wideband reflectarray design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4189-4193. doi: 10.1109/TAP.2015.2447004
    [13] Nayeri P, Elsherbeni A Z, Yang Fan. Radiation analysis approaches for reflectarray antennas [antenna designer's notebook][J]. IEEE Antennas and Propagation Magazine, 2013, 55(1): 127-134. doi: 10.1109/MAP.2013.6474499
    [14] Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 612-622. doi: 10.1109/TAP.2016.2639023
    [15] Xu Liang, Bi Shaofeng, Liu Jinliang, et al. A phase synthesis method for reflectarray in high-power microwave application[J]. IEEE Transactions on Plasma Science, 2022, 50(9): 2858-2863. doi: 10.1109/TPS.2022.3199430
    [16] 许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36: 013002

    Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based on variable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002
    [17] Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Design of a low-cost single-layer X/Ku dual-band metal-only reflectarray antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2106-2109. doi: 10.1109/LAWP.2017.2698099
    [18] Han C, Huang J, Chang Kai. A high efficiency offset-fed X/ka-dual-band reflectarray using thin membranes[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(9): 2792-2798. doi: 10.1109/TAP.2005.854531
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-27
  • 修回日期:  2025-10-26
  • 录用日期:  2025-10-16
  • 网络出版日期:  2025-11-01

目录

    /

    返回文章
    返回