Phase synthesis method for high-power microwave dual frequency reflectarray antennas
-
摘要: 基于反射阵列天线基础理论并利用参考相位优化方法,提出了一种适用于高功率微波双频反射阵列天线的相位综合方法。该方法充分考虑天线单元在不同入射波角度下的反射相位状态、电场强度以及与结构参数之间的对应关系,并进一步引入了筛选阈值的概念以提升系统功率容量,同时通过参考相位优选来缓解因筛选阈值而丢失掉小部分相移曲线引起的口径效率降低。该方法能够简化双频反射阵列天线流程并有效提升天线性能。为了验证方法的正确性,设计了一种多方框形状的改进型反射阵列天线单元,并用所提出方法开展双频反射阵列天线设计。该27×27单元阵列的工作频率为4.3 GHz和10 GHz,口径效率分别达到了67.37%和48.69%,真空中的功率容量达到数百兆瓦,有效验证了所提出相位综合方法的适用性。Abstract:
Background In recent years, reflect array antennas have received significant attention and research in the high-power microwave field due to their low profile, conformability, and spatial feed characteristics. Multi-frequency reflect array antennas can share the same antenna plane while providing differentiated beam steering at different frequencies, resulting in greater system platform adaptability. However, these antennas commonly face the challenges of limited power handling capacity and low aperture efficiency.Purpose This paper aims to proposes a phase synthesis method for high-power, dual-band reflect array antennas, which enhances their power handling capacity and aperture efficiency. This approach is universally applicable to the design of multi-frequency reflect array antennas.Methods The proposed phase synthesis method incorporates reference phase optimization and screening threshold techniques. It takes into account the reflected phase and electric field intensity of the antenna elements under different incident wave conditions. This approach effectively increases power capacity and aperture efficiency.Results We designed an improved reflect array antenna element and applied the proposed phase synthesis method to a dual-band reflect array antenna design. A 27×27 array operating at 4.3 and 10 GHz achieved aperture efficiencies of 67.37% and 48.69%, respectively, with a power capacity of hundreds of megawatts in a vacuum environment.Conclusions The proposed phase synthesis method has been successfully validated, proving its effectiveness in designing high-performance, high-power, dual-frequency, and multi-frequency reflective array antennas.-
Key words:
- high-power microwave /
- dual-band /
- reflect array antenna /
- screening threshold /
- power handling capacity
-
表 1 改进型多方框反射阵单元结构参数
Table 1. Geometry Parameters of the improved multi-frame reflectarray antenna element
(mm) t1 t2 w1 w2 l3 P h b1 3 2 0.8 1 4.5 22 3 0.4 表 2 所提出反射阵列天线与同类参考文献对比
Table 2. Comparison of the proposed reflect array antenna with relevant references
antenna type element type phase shift
typeoperating
frequency/GHzcross-section
dimensions/mmaperture
efficiency/%power handling
capacity/(MW/m2)C/X-band dual-frequency elliptical patch reflector array antenna[8] single-layer microstrip rotary phase shift technology 6.2/9.3 < 2.5 51.8/42 85.7/32.8 C/X-band dual-frequency nested elliptical reflector array antenna[9] single-layer microstrip rotary phase shift technology 4.3/10.4 < 3 40.2/40.5 65/76.3 All-Metal X/Ku dual-band reflector array antenna[17] single-layer
all-metalvariable-size phase shift technology 10/15 < 5.5 51.1/51.3 N/A X/Ka dual-band dual-layer microstrip reflector array antenna[18] double-layer microstrip rotary phase shift technology 8.7/32.2 < 5 55.4/47.7 N/A this paper single-layer
all-metalvariable-size phase shift technology 4.3/10 < 8 67.37/48.69 455.8/790 -
[1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015. [2] Benford J. Space applications of high-power microwaves[J]. IEEE Transactions on Plasma Science, 2008, 36(3): 569-581. doi: 10.1109/TPS.2008.923760 [3] 李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125 [4] Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781 [5] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256. [6] Zhao Xuhao, Xu Liang, Zhang Jiande, et al. A dielectric embedded reflectarray for high-power microwave application[J]. Review of Scientific Instruments, 2022, 93: 064703. doi: 10.1063/5.0091106 [7] Xu Liang, Yuan Chengwei, Zhang Qiang, et al. Design and experiments of a beam-steerable wideband reflectarray antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1955-1959. doi: 10.1109/TAP.2022.3232750 [8] Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823 [9] 陈瑞, 李相强, 张健穹, 等. 高功率宽频比C/X双频反射阵列天线设计[J]. 强激光与粒子束, 2023, 35: 063002Chen Rui, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power wide frequency ratio C/X dual -band reflectarray antenna[J]. High Power Laser and Particle Beams, 2023, 35: 063002 [10] 赵旭浩, 毕绍锋, 张建德, 等. 伸缩式全金属反射阵列扫描天线[J]. 强激光与粒子束, 2022, 34: 043004Zhao Xuhao, Bi Shaofeng, Zhang Jiande, et al. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34: 043004 [11] Bi Shaofeng, Xu Liang, Cheng Xiaoyu, et al. An all-metal, simple-structured reflectarray antenna with 2-D beam-steerable capability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 129-133. doi: 10.1109/LAWP.2022.3204617 [12] Mao Yilin, Xu Shenheng, Yang Fan, et al. A novel phase synthesis approach for wideband reflectarray design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4189-4193. doi: 10.1109/TAP.2015.2447004 [13] Nayeri P, Elsherbeni A Z, Yang Fan. Radiation analysis approaches for reflectarray antennas [antenna designer's notebook][J]. IEEE Antennas and Propagation Magazine, 2013, 55(1): 127-134. doi: 10.1109/MAP.2013.6474499 [14] Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 612-622. doi: 10.1109/TAP.2016.2639023 [15] Xu Liang, Bi Shaofeng, Liu Jinliang, et al. A phase synthesis method for reflectarray in high-power microwave application[J]. IEEE Transactions on Plasma Science, 2022, 50(9): 2858-2863. doi: 10.1109/TPS.2022.3199430 [16] 许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36: 013002Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based on variable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002 [17] Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Design of a low-cost single-layer X/Ku dual-band metal-only reflectarray antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2106-2109. doi: 10.1109/LAWP.2017.2698099 [18] Han C, Huang J, Chang Kai. A high efficiency offset-fed X/ka-dual-band reflectarray using thin membranes[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(9): 2792-2798. doi: 10.1109/TAP.2005.854531 -
下载: