留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型无人机的高功率微波后门耦合效应仿真

曾凤英 管徐青云 白璐 张耕 杨晓庆 田姗

曾凤英, 管徐青云, 白璐, 等. 典型无人机的高功率微波后门耦合效应仿真[J]. 强激光与粒子束, 2025, 37: 113006. doi: 10.11884/HPLPB202537.250273
引用本文: 曾凤英, 管徐青云, 白璐, 等. 典型无人机的高功率微波后门耦合效应仿真[J]. 强激光与粒子束, 2025, 37: 113006. doi: 10.11884/HPLPB202537.250273
Zeng Fengying, Guanxu Qingyun, Bai Lu, et al. Simulation of high-power microwave backdoor coupling phenomena in representative unmanned aerial vehicle systems[J]. High Power Laser and Particle Beams, 2025, 37: 113006. doi: 10.11884/HPLPB202537.250273
Citation: Zeng Fengying, Guanxu Qingyun, Bai Lu, et al. Simulation of high-power microwave backdoor coupling phenomena in representative unmanned aerial vehicle systems[J]. High Power Laser and Particle Beams, 2025, 37: 113006. doi: 10.11884/HPLPB202537.250273

典型无人机的高功率微波后门耦合效应仿真

doi: 10.11884/HPLPB202537.250273
详细信息
    作者简介:

    曾凤英,421710938@qq.com

    通讯作者:

    管徐青云,guanxuqingyun@163.com

  • 中图分类号: TN972+.22

Simulation of high-power microwave backdoor coupling phenomena in representative unmanned aerial vehicle systems

  • 摘要: 无人机在高功率微波(HPM)辐照下的后门耦合效应是当前电磁防护与反制领域的重要课题。针对某型微型无人机,开展HPM辐照下的电磁耦合特性研究,旨在揭示其在不同频率与入射角条件下的电磁响应规律与损伤机制。基于无人机运动规律,建立了融合飞行动态与姿态变化的双坐标系模型;借助COMSOL Multiphysics仿真平台,依据逐级毁伤的思路,系统分析了1~18 GHz频段内不同入射角下无人机机壳与内部飞控主板的电场与电流分布。仿真结果表明:选型无人机的典型后门耦合通道——机身侧边开孔是连接外部辐照和内部损伤的核心;随着频率和入射角增大,机壳表面电场与感应电流密度显著增强,尤其在14 GHz附近因开孔结构与Ku波段波导口面尺寸接近引发谐振,导致该频点电流密度急剧上升;飞控主板中FM25V05型芯片在14、15、16、18 GHz频点易出现过压,其中Vdd端在18 GHz时电压高达21.868 V,远超其工作阈值,可导致功能失效。本研究为HPM反无人机系统的频率优选与作战策略制定提供了理论依据与仿真支持。
  • 图  1  无人机运动模型图

    Figure  1.  UAV motion modeling diagram

    图  2  无人机几何模型与透视图

    Figure  2.  Geometric modeling and perspective view of UAV

    图  3  机身两侧开孔示意图

    Figure  3.  Schematic of the openings on both sides of the fuselage

    图  4  无人机周围的电场散射与衍射

    Figure  4.  Scattering and diffraction of electric fields around UAV

    图  5  入射角对空间电场分布的影响

    Figure  5.  Effect of angle of incidence on electric field distribution in space

    图  6  8 GHz高功率微波辐照无人机表面电场与入射角的关系

    Figure  6.  Relationship between surface electric field and angle of incidence for 8 GHz high-power microwave irradiated UAV

    图  7  机壳最大表面电场随频率和入射角的关系

    Figure  7.  Maximum surface electric field of the enclosure as a function of frequency and angle of incidence

    图  8  入射角20°时的无人机表面电流密度分布

    Figure  8.  Current density distribution on the surface of the UAV at an incidence angle of 20°

    图  9  机壳最大表面电流密度随频率和入射角的关系

    Figure  9.  Maximum surface current density of enclosure as a function of frequency and angle of incidence

    图  10  飞控主板正面与反面模型图

    Figure  10.  Flight control motherboard front and reverse model drawings

    图  11  飞控主板最大表面电场随频率和入射角的关系

    Figure  11.  Maximum surface electric field as a function of frequency and angle of incidence for flight control motherboards

    图  12  飞控主板最大表面电流密度随频率和入射角的关系

    Figure  12.  Maximum surface current density as a function of frequency and angle of incidence for flight control motherboards

    图  13  能量流动示意图

    Figure  13.  Energy flow diagram

    图  14  入射角20°时1~18 GHz的飞控主板表面电场分布

    Figure  14.  Electric field distribution on the surface of the flight control motherboard from 1 to 18 GHz at an incidence angle of 20°

    图  15  引脚1、引脚2端口电压与频率的关系

    Figure  15.  Pin1, Pin2 port voltage as a function of frequency

  • [1] 金钰, 谷全祥. 2023年国外军用无人机装备技术发展综述[J]. 战术导弹技术, 2024(1): 33-47

    Jin Yu, Gu Quanxiang. Overview of the development of foreign military UAV systems and technology in 2023[J]. Tactical Missile Technology, 2024(1): 33-47
    [2] 李金蓉, 张荣荣, 张宇. 中美高功率微波强电磁环境效应试验标准研究[J]. 安全与电磁兼容, 2023(5): 65-68,72

    Li Jinrong, Zhang Rongrong, Zhang Yu. Research on the test standards of high power microwave strong electromagnetic environmental effect in China and the United States[J]. Safety and electromagnetic compatibility, 2023(5): 65-68,72
    [3] 张铁纯, 王育博, 刘明亮, 等. 直升机强电磁脉冲耦合效应研究[J/OL]. 微波学报, (2024-09-19). https://link.cnki.net/urlid/32.1493.TN.20240918.1718.002

    Zhang Tiechun, Wang Yubo, Liu Mingliang, et al. Study on the coupling effect of strong electromagnetic pulse in helicopter[J/OL]. Journal of Microwaves, (2024-09-19). https://link.cnki.net/urlid/32.1493.TN.20240918.1718.002
    [4] Zhang Dongxiao, Zhou Xing, Cheng E, et al. Investigation on effects of HPM pulse on UAV's datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 829-839. doi: 10.1109/TEMC.2019.2915285
    [5] Liu Yang, Chen Zongsheng, Shi Jiaming. Simulation of HPM propagation in a double-line containing plasma filaments produced by intense femtosecond laser pulses[J]. IEEE Transactions on Plasma Science, 2019, 47(2): 1394-1398. doi: 10.1109/TPS.2018.2887231
    [6] 赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215

    Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215
    [7] 蔡保杰, 刘冬, 王歧朋, 等. 城市作战中反微小型无人机技术分析[J]. 国防科技, 2023, 44(2): 122-127

    Cai Baojie, Liu Dong, Wang Qipeng, et al. Analysis of anti-micro UAVs technologies in city operations[J]. National Defense Technology, 2023, 44(2): 122-127
    [8] 胡明, 陈圣贤, 李永龙, 等. 重频超宽带电磁脉冲对GPS导航接收机的效应研究[J]. 强激光与粒子束, 2024, 36: 033011 doi: 10.11884/HPLPB202436.230324

    Hu Ming, Chen Shengxian, Li Yonglong, et al. Influence of repeated frequency UWB electromagnetic pulse on GPS navigation receiver[J]. High Power Laser and Particle Beams, 2024, 36: 033011 doi: 10.11884/HPLPB202436.230324
    [9] 肖天, 高原, 秦风. 线缆高功率微波耦合特性仿真与试验研究[J]. 强激光与粒子束, 2025, 37: 023002 doi: 10.11884/HPLPB202537.240225

    Xiao Tian, Gao Yuan, Qin Feng. Simulation and experimental study on high power microwave coupling characteristics of cables[J]. High Power Laser and Particle Beams, 2025, 37: 023002 doi: 10.11884/HPLPB202537.240225
    [10] 李巍, 李明典, 刘斌, 等. 高功率微波对引信射频前端的干扰与防护研究[J]. 航空兵器, 2022, 29(5): 100-106

    Li Wei, Li Mingdian, Liu Bin, et al. Research on the interference and protection of high power microwave to RF front-end of fuze[J]. Aero Weaponry, 2022, 29(5): 100-106
    [11] Zhao Min, Chen Yazhou, Zhou Xing, et al. Investigation on falling and damage mechanisms of UAV illuminated by HPM pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1412-1422. doi: 10.1109/TEMC.2022.3187017
    [12] Mao Qidong, Xiang Zhongwu, Huang Liyang, et al. High-power microwave pulse-induced failure on unmanned aerial vehicle system[J]. IEEE Transactions on Plasma Science, 2023, 51(7): 1885-1893. doi: 10.1109/TPS.2023.3236300
    [13] 冯溪溪, 赵景涛, 曹垒. 典型后门耦合目标回波信号特性分析[J]. 强激光与粒子束, 2024, 36: 043008 doi: 10.11884/HPLPB202436.230272

    Feng Xixi, Zhao Jingtao, Cao Lei. Characteristic analysis of echo signal of typical backdoor coupling target[J]. High Power Laser and Particle Beams, 2024, 36: 043008 doi: 10.11884/HPLPB202436.230272
    [14] Li Yonglong, Hu Ming, Liang Mingxuan, et al. Study on the effects of ultra-wideband electromagnetic pulses on unmanned aerial vehicles[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(4): 1192-1202. doi: 10.1109/TEMC.2024.3386551
    [15] 金祖升, 李建轩, 施佳林, 等. 微小型无人飞行器电磁屏蔽效能等效测试方法[J]. 强激光与粒子束, 2024, 36: 043003 doi: 10.11884/HPLPB202436.230261

    Jin Zusheng, Li Jianxuan, Shi Jialin, et al. Equivalent testing method for shielding effectiveness of miniature unmanned aerial vehicle[J]. High Power Laser and Particle Beams, 2024, 36: 043003 doi: 10.11884/HPLPB202436.230261
    [16] 肖国松, 刘家豪, 马振洋, 等. 航空发动机电子控制器的高强辐射场干扰及防护[J]. 强激光与粒子束, 2024, 36: 043007 doi: 10.11884/HPLPB202436.230320

    Xiao Guosong, Liu Jiahao, Ma Zhenyang, et al. HIRF interference research and protection of aircraft engine electronic controller[J]. High Power Laser and Particle Beams, 2024, 36: 043007 doi: 10.11884/HPLPB202436.230320
    [17] 伦岳斌, 王宏伦, 钱秋朦, 等. 高空模拟试车台进气系统负温试验的温度压力耦合特性分析[J]. 燃气涡轮试验与研究, 2024, 37(1): 12-18 doi: 10.3724/j.GTER.20240011

    Lun Yuebin, Wang Honglun, Qian Qiumeng, et al. Temperature-pressure interaction analysis of altitude ground test facility's air intake system in negative temperature simulation[J]. Gas Turbine Experiment and Research, 2024, 37(1): 12-18 doi: 10.3724/j.GTER.20240011
    [18] 姜海瑞, 杜云玲, 孙士杰, 等. 镍基高温合金氢脆行为研究进展[J]. 燃气涡轮试验与研究, 2025, 38(1): 1-15 doi: 10.3724/j.GTER.20250010

    Jiang Hairui, Du Yunling, Sun Shijie, et al. Review on hydrogen embrittlement behavior of Ni-based superalloys[J]. Gas Turbine Experiment and Research, 2025, 38(1): 1-15 doi: 10.3724/j.GTER.20250010
  • 加载中
图(15)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-27
  • 修回日期:  2025-10-02
  • 录用日期:  2025-10-21
  • 网络出版日期:  2025-10-20
  • 刊出日期:  2025-11-15

目录

    /

    返回文章
    返回