Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis
-
摘要: 针对卫星通信系统对宽频带天线及波束可调性的需求,提出一种覆盖11.45~11.7 GHz和12.25~12.75 GHz的双频段贴片天线设计,并基于阵列分析与优化方法提升系统性能。首先,通过改进贴片结构及馈电网络设计,实现天线在目标频段内S11≤−20 dB,且在11~13 GHz范围内S11≤−15dB。其次,构建10×10天线阵列,分析其等效全向辐射功率(EIRP)与增益噪声温度比(G/T),验证上下行链路性能指标。进一步提出基于Tabu算法的相位加权优化方法,将波束宽度扩展为等幅同相阵列的1.8倍。仿真实验结果表明,该设计可满足Ku波段卫星通信对宽频带与波束灵活性的要求,为复杂电磁环境下天线系统优化提供新思路。Abstract:
Background Modern satellite communication systems demand wideband operation and adaptable beam coverage, particularly in the Ku-band.Purpose This study aims to design a dual-band patch antenna covering 11.45–11.7 GHz and 12.25–12.75 GHz and enhance its system-level performance through array analysis and beamwidth optimization.Methods A dual-layer patch structure and feeding network are optimized to achieve impedance matching. An 10×10 array is constructed, and its EIRP and G/T are evaluated. A phase weighting method based on the Tabu algorithm is applied to broaden the beamwidth.Results The antenna achieves S11 ≤ –20 dB in the target bands and ≤ –15 dB across 11–13 GHz. The array exhibits satisfactory EIRP and G/T values. The beamwidth is expanded to 1.8 times that of a conventional uniform array.Conclusions The proposed design meets the requirements of Ku-band satellite communications in terms of bandwidth and beam adjustability, offering an effective solution for optimising antenna performance in complex electromagnetic environments.-
Key words:
- patch antenna /
- Tabu algorithm /
- beam optimization /
- EIRP /
- G/T
-
表 1 天线设计参数
Table 1. Antenna design parameters
parameter value/mm definition ltopload 6.15 Top load length htopload 2.28 Top load height lpatch 7.5 Patch length lground 10 Ground plane length hsub1 0.508 1st substrate height hsub2 0.508 2nd substrate height lslot1 4.5 1st patch slot length along x-axis lslot2 3 1st patch slot length along y-axis lslot3 0.7 2nd patch slot length along y-axis lslot4 0.5 2nd short patch slot length along x-axis lslot5 2 2nd long patch slot length along x-axis wslot 0.15 Patch notch width lfeed1 3 1st feed length lfeed2 1.5 2nd feed length wfeed1 1.2 1st feed width wfeed2 2 2nd feed width 表 2 相控阵天线窄波束模式EIRP计算
Table 2. EIRP calculation of phased array antenna in narrow-beam mode
Frequency/GHz Array Gain/dBi TR P-1dB/dBm Loss/dB EIRP/dBm 11.45 22.1 26 0.5 67.6 11.6 22.4 26 0.5 67.9 11.7 22.5 26 0.5 68 表 3 相控阵天线窄波束模式G/T计算
Table 3. G/T calculation of phased array antenna in narrow-beam mode
Frequency/GHz Array gain/dBi System noise/K G/T/(dB·K−1) 12.25 22.9 533.85 −4.37 12.5 23.3 533.82 −3.97 12.75 23.6 533.82 −3.67 -
[1] Fan Tianqi, Jiang Botao, Liu Ruizhi, et al. A novel double U-slot microstrip patch antenna design for low-profile and broad bandwidth applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2543-2549. doi: 10.1109/TAP.2021.3125382 [2] Khan M, Chowdhury M. Analysis of modal excitation in wideband slot-loaded microstrip patch antenna using theory of characteristic modes[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7618-7623. doi: 10.1109/TAP.2020.2989867 [3] Uluslu A. Chameleon swarm algorithm assisted optimization of U-slot patch antenna for quad-band applications[J]. IEEE Access, 2022, 10: 74152-74163. doi: 10.1109/ACCESS.2022.3190378 [4] Kim Y B, Kim J W, Lee H L. Low profile multi-slot loaded antenna with enhanced gain-to-volume ratio and efficiency[J]. IEEE Access, 2020, 8: 225407-225415. doi: 10.1109/ACCESS.2020.3044611 [5] Ding Zhuofu, Xiao Shaoqiu, Xiao Runjun. A Ku-band, compact, polarization-reconfigurable, multilayered, wideband antenna: a proposed design with high mechanical stability[J]. IEEE Antennas and Propagation Magazine, 2020, 62(1): 23-33. doi: 10.1109/MAP.2019.2943340 [6] Maman L, Zach S, Boag A. Beam shaping by phase-only waveform encoding for transmitting array antennas in radar applications[J]. IEEE Open Journal of Antennas and Propagation, 2025, 6(2): 478-486. doi: 10.1109/OJAP.2025.3529505 [7] Xu Huansong, Liang Zhixi, Li Yuanxin, et al. A high-gain microstrip magnetic dipole antenna utilizing slot-loaded high-order mode for WLAN applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9130-9138. doi: 10.1109/TAP.2022.3191425 [8] Chen Jiangcheng, Berg M, Rasilainen K, et al. Broadband cross-slotted patch antenna for 5G millimeter-wave applications based on characteristic mode analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11277-11292. doi: 10.1109/TAP.2022.3209217 [9] Latha T, Ram G, Gande A K, et al. Compact wideband e-slotted e-shaped patch antenna for Ku-band phased array applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5596-5603. doi: 10.1109/TAES.2024.3374275 [10] Liu Pengfei, Zhu Xiaowei, Zhang Yan, et al. Patch antenna loaded with paired shorting pins and H-shaped slot for 28/38 GHz dual-band MIMO applications[J]. IEEE Access, 2020, 8: 23705-23712. doi: 10.1109/ACCESS.2020.2964721 [11] Sun Guanghua, Wong H. C-shaped open slot antenna array for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8426-8435. doi: 10.1109/TAP.2021.3090844 [12] Banerjee R, Sharma S K, Waldstein S W, et al. A 22-28 GHz polarization-reconfigurable flat-panel 8× 8 Tx/Rx phased array antenna with uniquely arranged novel radiating elements for CubeSat communication[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(5): 4138-4152. doi: 10.1109/TAP.2023.3249820 [13] Fenech H, Amos S, Tomatis A, et al. High throughput satellite systems: an analytical approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 192-202. doi: 10.1109/TAES.2014.130450 -