留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽频带贴片天线阵列Tabu优化设计与分析

胡俊 李荣明

胡俊, 李荣明. 宽频带贴片天线阵列Tabu优化设计与分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250275
引用本文: 胡俊, 李荣明. 宽频带贴片天线阵列Tabu优化设计与分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250275
Hu Jun, Li Rongming. Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250275
Citation: Hu Jun, Li Rongming. Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250275

宽频带贴片天线阵列Tabu优化设计与分析

doi: 10.11884/HPLPB202537.250275
详细信息
    作者简介:

    胡 俊,xidianhujun@163.com

  • 中图分类号: TN82;TN927

Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis

  • 摘要: 针对卫星通信系统对宽频带天线及波束可调性的需求,提出一种覆盖11.45~11.7 GHz和12.25~12.75 GHz的双频段贴片天线设计,并基于阵列分析与优化方法提升系统性能。首先,通过改进贴片结构及馈电网络设计,实现天线在目标频段内S11≤−20 dB,且在11~13 GHz范围内S11≤−15dB。其次,构建10×10天线阵列,分析其等效全向辐射功率(EIRP)与增益噪声温度比(G/T),验证上下行链路性能指标。进一步提出基于Tabu算法的相位加权优化方法,将波束宽度扩展为等幅同相阵列的1.8倍。仿真实验结果表明,该设计可满足Ku波段卫星通信对宽频带与波束灵活性的要求,为复杂电磁环境下天线系统优化提供新思路。
  • 图  1  宽带开槽贴片天线的结构设计

    Figure  1.  Configuration of the proposed wideband patch notch antenna

    图  2  天线的|S11|曲线

    Figure  2.  The |S11| curves of the proposed antenna

    图  3  频率11.45 GHz的辐射方向图

    Figure  3.  The simulation radiation patterns of the proposed antenna at f = 11.45 GHz

    图  4  频率12.75 GHz的辐射方向图

    Figure  4.  The simulation radiation patterns of the proposed antenna at f = 12.75 GHz

    图  5  算法流程图

    Figure  5.  Algorithm flow chart

    图  6  区域分解示意图

    Figure  6.  Schematic diagram of domain decomposition

    图  7  10×10阵列结构

    Figure  7.  Array structure of 10×10

    图  8  不同程度波束展宽的方向图

    Figure  8.  Radiation patterns in elevation cut for various levels of beam broadening

    表  1  天线设计参数

    Table  1.   Antenna design parameters

    parameter value/mm definition
    ltopload 6.15 Top load length
    htopload 2.28 Top load height
    lpatch 7.5 Patch length
    lground 10 Ground plane length
    hsub1 0.508 1st substrate height
    hsub2 0.508 2nd substrate height
    lslot1 4.5 1st patch slot length along x-axis
    lslot2 3 1st patch slot length along y-axis
    lslot3 0.7 2nd patch slot length along y-axis
    lslot4 0.5 2nd short patch slot length along x-axis
    lslot5 2 2nd long patch slot length along x-axis
    wslot 0.15 Patch notch width
    lfeed1 3 1st feed length
    lfeed2 1.5 2nd feed length
    wfeed1 1.2 1st feed width
    wfeed2 2 2nd feed width
    下载: 导出CSV

    表  2  相控阵天线窄波束模式EIRP计算

    Table  2.   EIRP calculation of phased array antenna in narrow-beam mode

    Frequency/GHz Array Gain/dBi TR P-1dB/dBm Loss/dB EIRP/dBm
    11.45 22.1 26 0.5 67.6
    11.6 22.4 26 0.5 67.9
    11.7 22.5 26 0.5 68
    下载: 导出CSV

    表  3  相控阵天线窄波束模式G/T计算

    Table  3.   G/T calculation of phased array antenna in narrow-beam mode

    Frequency/GHz Array gain/dBi System noise/K G/T/(dB·K−1)
    12.25 22.9 533.85 −4.37
    12.5 23.3 533.82 −3.97
    12.75 23.6 533.82 −3.67
    下载: 导出CSV
  • [1] Fan Tianqi, Jiang Botao, Liu Ruizhi, et al. A novel double U-slot microstrip patch antenna design for low-profile and broad bandwidth applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2543-2549. doi: 10.1109/TAP.2021.3125382
    [2] Khan M, Chowdhury M. Analysis of modal excitation in wideband slot-loaded microstrip patch antenna using theory of characteristic modes[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7618-7623. doi: 10.1109/TAP.2020.2989867
    [3] Uluslu A. Chameleon swarm algorithm assisted optimization of U-slot patch antenna for quad-band applications[J]. IEEE Access, 2022, 10: 74152-74163. doi: 10.1109/ACCESS.2022.3190378
    [4] Kim Y B, Kim J W, Lee H L. Low profile multi-slot loaded antenna with enhanced gain-to-volume ratio and efficiency[J]. IEEE Access, 2020, 8: 225407-225415. doi: 10.1109/ACCESS.2020.3044611
    [5] Ding Zhuofu, Xiao Shaoqiu, Xiao Runjun. A Ku-band, compact, polarization-reconfigurable, multilayered, wideband antenna: a proposed design with high mechanical stability[J]. IEEE Antennas and Propagation Magazine, 2020, 62(1): 23-33. doi: 10.1109/MAP.2019.2943340
    [6] Maman L, Zach S, Boag A. Beam shaping by phase-only waveform encoding for transmitting array antennas in radar applications[J]. IEEE Open Journal of Antennas and Propagation, 2025, 6(2): 478-486. doi: 10.1109/OJAP.2025.3529505
    [7] Xu Huansong, Liang Zhixi, Li Yuanxin, et al. A high-gain microstrip magnetic dipole antenna utilizing slot-loaded high-order mode for WLAN applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9130-9138. doi: 10.1109/TAP.2022.3191425
    [8] Chen Jiangcheng, Berg M, Rasilainen K, et al. Broadband cross-slotted patch antenna for 5G millimeter-wave applications based on characteristic mode analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11277-11292. doi: 10.1109/TAP.2022.3209217
    [9] Latha T, Ram G, Gande A K, et al. Compact wideband e-slotted e-shaped patch antenna for Ku-band phased array applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5596-5603. doi: 10.1109/TAES.2024.3374275
    [10] Liu Pengfei, Zhu Xiaowei, Zhang Yan, et al. Patch antenna loaded with paired shorting pins and H-shaped slot for 28/38 GHz dual-band MIMO applications[J]. IEEE Access, 2020, 8: 23705-23712. doi: 10.1109/ACCESS.2020.2964721
    [11] Sun Guanghua, Wong H. C-shaped open slot antenna array for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8426-8435. doi: 10.1109/TAP.2021.3090844
    [12] Banerjee R, Sharma S K, Waldstein S W, et al. A 22-28 GHz polarization-reconfigurable flat-panel 8× 8 Tx/Rx phased array antenna with uniquely arranged novel radiating elements for CubeSat communication[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(5): 4138-4152. doi: 10.1109/TAP.2023.3249820
    [13] Fenech H, Amos S, Tomatis A, et al. High throughput satellite systems: an analytical approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 192-202. doi: 10.1109/TAES.2014.130450
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-10-09
  • 录用日期:  2025-09-16
  • 网络出版日期:  2025-10-21

目录

    /

    返回文章
    返回