留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海杂波和电磁干扰作用下船用气象雷达电磁仿真模型可信度评估

徐平 万海军 张勇 李建轩

徐平, 万海军, 张勇, 等. 海杂波和电磁干扰作用下船用气象雷达电磁仿真模型可信度评估[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250278
引用本文: 徐平, 万海军, 张勇, 等. 海杂波和电磁干扰作用下船用气象雷达电磁仿真模型可信度评估[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250278
Xu Ping, Wan Haijun, Zhang Yong, et al. Credibility assessment of marine weather radar electromagnetic simulation models under sea clutter and electromagnetic interference[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250278
Citation: Xu Ping, Wan Haijun, Zhang Yong, et al. Credibility assessment of marine weather radar electromagnetic simulation models under sea clutter and electromagnetic interference[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250278

海杂波和电磁干扰作用下船用气象雷达电磁仿真模型可信度评估

doi: 10.11884/HPLPB202537.250278
详细信息
    作者简介:

    徐平,

  • 中图分类号: TP391.9

Credibility assessment of marine weather radar electromagnetic simulation models under sea clutter and electromagnetic interference

  • 摘要: 船用气象雷达在远海作业时,除受海杂波影响外,还需面对同频电台、导航雷达及卫星通信等多源耦合电磁干扰,导致传统杂波-目标模型可信度显著下降。提出“杂波-干扰-目标”三维耦合场景下的可信度评估框架,首先,以混合分布模型定义杂波-干扰联合统计特性;然后,构建“时-频-空”三域特征空间,利用多维动态时间规整度量仿真与实测差异;最后,融合杂波、干扰、目标及系统链路误差,输出带不确定性区间的可信度,为复杂电磁环境下仿真模型在线校准与资源调度提供了可量化依据。
  • 图  1  “分布-特征-系统”的可信度评估框架

    Figure  1.  Reliability evaluation framework of "distribution-feature-system"

    图  2  系统层级的四节点BN模型

    Figure  2.  A system-level four-node BN model

    图  3  耦合环境下调查船模型示意图

    Figure  3.  Schematic of the survey ship model under coupled environment

    图  4  调查船RCS耦合模型与测试值对比

    Figure  4.  Comparison of the RCS coupling model of the survey vessel with the test values

    图  5  单脉冲接收信号时域波形

    Figure  5.  Time-Domain Waveform of Monopulse Received Signal

    图  6  可信度对分布尾指数的敏感性曲线

    Figure  6.  Sensitivity Curve of Credibility to Distribution Tail Index

    表  1  各层级可信度计算结果

    Table  1.   Calculation results of each level of credibility

    name credibility
    statistical hierarchy 0.82
    feature hierarchy 0.88
    system hierarchy 0.86
    下载: 导出CSV

    表  2  各方法量化评估结果对比

    Table  2.   Comparison of quantitative evaluation results of various methods

    evaluation methodology credibility 95% confidence interval
    this article method 0.86 [0.83,0.89]
    traditional method (only considering sea clutter) 0.75 [0.72,0.78]
    single feature method (frequency domain only) 0.77 [0.74,0.80]
    下载: 导出CSV
  • [1] 刘其凤, 吴为军. 电磁计算在复杂舰船平台电磁环境效应量化设计中的应用与挑战[J]. 电波科学学报, 2020, 35(1): 149-156

    Liu Qifeng, Wu Weijun. Application and challenge of computational electromagnetics in quantitative design of electromagnetic environment effect of complex equipment platform[J]. Chinese Journal of Radio Science, 2020, 35(1): 149-156
    [2] Du Pengbo, Wang Yunhua, Li Xin, et al. The Doppler characteristics of sea echoes acquired by motion radar[J]. Remote Sensing, 2023, 15: 4888. doi: 10.3390/rs15194888
    [3] 吴云松. 雷达海杂波的实时产生与实现[D]. 西安: 西安电子科技大学, 2024

    Wu Yunsong. Real-time generation and implementation of radar sea clutter[D]. Xi’an: Xidian University, 2024
    [4] Goldstein H. Sea echo. Propagation of Short Radio Waves, DE Kerr, Ed. 1951.
    [5] Jakeman E, Pusey P. A model for non-Rayleigh sea echo[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(6): 806-814. doi: 10.1109/TAP.1976.1141451
    [6] Xue Jian, Xu Shuwen, Liu Jun, et al. Model for non-Gaussian sea clutter amplitudes using generalized inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 892-896. doi: 10.1109/LGRS.2018.2886782
    [7] Huang Penghui, Zou Zihao, Xia Xianggen, et al. A statistical model based on modified generalized-K distribution for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8015805.
    [8] Titov E V, Soshnikov A A, Drobyazko O N. Experimental research of electromagnetic environment in domestic environment with computer visualization of electromagnetic pollution[C]//2020 International Conference on Industrial Engineering, Applications and Manufacturing. 2020: 1-5.
    [9] Wang Yulei, Li Kai, Hu Yunfeng, et al. Modeling and quantitative assessment of environment complexity for autonomous vehicles[C]//2020 Chinese Control and Decision Conference (CCDC). 2020: 2124-2129.
    [10] Li Mei, Wei Guanghui. A review of quantitative evaluation of electromagnetic environmental effects: research progress and trend analysis[J]. Sensors, 2023, 23: 4257. doi: 10.3390/s23094257
    [11] Ward K D, Tough R J A, Watts S. Sea clutter: scattering, the K distribution and radar performance[J]. Waves in Random and Complex Media, 2007, 17(2): 233-234. doi: 10.1080/17455030601097927
    [12] Iskander D R, Zoubir A M. Estimation of the parameters of the K-distribution using higher order and fractional moments [radar clutter][J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1453-1457. doi: 10.1109/7.805463
    [13] 宋国丽, 郭新毅, 马力. 海洋环境噪声中的α稳定分布模型[J]. 声学学报, 2019, 44(2): 177-188

    Song Guoli, Guo Xinyi, Ma Li. α stable distribution model in ocean ambient noise[J]. Acta Acustica, 2019, 44(2): 177-188
    [14] 周涛, 王嘉. α稳定分布综述[J]. 电声技术, 2011, 35(3): 57-60

    Zhou Tao, Wang Jia. Overview of α-stable distribution[J]. Audio Engineering, 2011, 35(3): 57-60
    [15] 吴楠, 陈炯. 舰船目标RCS水面模拟试验及其应用探讨[J]. 中国舰船研究, 2012, 7(5): 103-106,118

    Wu Nan, Chen Jiong. Discussion on the RCS simulation test of naval ships on water surface[J]. Chinese Journal of Ship Research, 2012, 7(5): 103-106,118
    [16] 郭立新, 魏仪文. 复杂动态海面与目标电磁散射及回波仿真研究现状与展望[J]. 雷达学报, 2023, 12(1): 76-109

    Guo Lixin, Wei Yiwen. Status and prospects of electromagnetic scattering echoes simulation from complex dynamic sea surfaces and targets[J]. Journal of Radars, 2023, 12(1): 76-109
    [17] 黄忠胜, 陈宇浩, 杨明, 等. 基于贝叶斯方法的设备级电磁脉冲效应评估[J]. 强激光与粒子束, 2015, 27: 125002

    Huang Zhongsheng, Chen Yuhao, Yang Ming, et al. Effect assessment of electromagnetic pulse at equipment level based on bayesian method[J]. High Power Laser and Particle Beams, 2015, 27: 125002
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-30
  • 修回日期:  2025-10-13
  • 录用日期:  2025-09-18
  • 网络出版日期:  2025-10-21

目录

    /

    返回文章
    返回