留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波等离子体推力器微小推力测试研究

袁野 郭成 鲍浩然 金凡亚

袁野, 郭成, 鲍浩然, 等. 微波等离子体推力器微小推力测试研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250285
引用本文: 袁野, 郭成, 鲍浩然, 等. 微波等离子体推力器微小推力测试研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250285
Yuan Ye, Guo Cheng, Bao Haoran, et al. Research on micro thrust testing of microwave plasma thruster[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250285
Citation: Yuan Ye, Guo Cheng, Bao Haoran, et al. Research on micro thrust testing of microwave plasma thruster[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250285

微波等离子体推力器微小推力测试研究

doi: 10.11884/HPLPB202537.250285
基金项目: 西物创新行动项目(202301XWCX003)
详细信息
    作者简介:

    袁 野,494050711@qq.com

  • 中图分类号: O539

Research on micro thrust testing of microwave plasma thruster

  • 摘要: 本研究聚焦于微波等离子体推力器在微小卫星应用中的关键测试技术难题。针对实验室真空环境下的空间约束条件,创新性地开发了多种推力测量方案。实验采用1.5 kW功率的2.45 GHz磁控管微波源,通过氦气工质产生等离子体推力。研究重点突破了传统推力测量装置在有限空间内的应用限制,建立了包括直接力学测量和间接参数推算在内的完整测试体系。测试结果表明,在0~600 mN推力范围内,这四种方法在不同工况下均表现出良好的测量效果,且推拉力计和单摆推力计的测量结果高度一致,验证了方法的有效性。此外,基于谐振腔特性的间接计算方法在放电实验中提供了与直接测量相符的推力估计值,进一步证明了其可行性。本研究为微小推力器的地面测试提供了可靠的技术方案,其模块化设计思路特别适合立方星等微小卫星平台的推进系统验证需求。
  • 图  1  微波等离子体推力器结构图

    Figure  1.  Structure diagram of microwave plasma thruster

    图  2  基于推拉力计的推力测试系统

    Figure  2.  Thrust testing system based on push-pull force gauge

    图  3  基于单摆的推力测试系统

    Figure  3.  Thrust testing system based on pendulum

    图  4  单摆推力计

    Figure  4.  Single pendulum thrust meter

    图  5  单摆推力计受力分析图

    Figure  5.  Force analysis diagram of pendulum thrust meter

    图  6  基于谐振腔气体温度的推力测试系统

    Figure  6.  Thrust testing system based on resonant cavity gas temperature

    图  7  基于谐振腔气体压强的推力测试系统

    Figure  7.  Thrust testing system based on resonant cavity gas pressure

    图  8  微波等离子体推力器放电情况

    Figure  8.  Discharge of microwave plasma thruster

    图  9  冷气实验中推力器推力随He流量变化图

    Figure  9.  Diagram of thrust variation of thruster with He flow rate in cold air experiment

    图  10  冷气实验中推力器比冲随He流量变化图

    Figure  10.  Diagram of the variation of thruster specific impulse with He flow rate in the cold air experiment

    图  11  放电实验中推力器推力随He流量变化图

    Figure  11.  Diagram of thrust variation of thruster with He flow rate in discharge experiment

    图  12  放电实验中推力器比冲随He流量变化图

    Figure  12.  Diagram of the variation of thruster specific impulse with He flow rate in discharge experiment

  • [1] Abaimov M D, Micci M M, Bilén S G. A 17.8-GHz microwave electrothermal thruster for cubesats and small satellites[C]//Space Propulsion 2016. 2016.
    [2] Gallucci S E, Micci M M, Bilén S G. Design of a water-propellant 17.8-GHz microwave electrothermal thruster[C]//Presented at the 35th International Electric Propulsion Conference. 2017: 296.
    [3] Biswas S, Beckerle M, Mcternan J, et al. Thrust Measurements of a 17.8-GHz ammonia microwave electrothermal thruster for small satellites[C]//Presented at the 37th International Electric Propulsion Conference. 2022.
    [4] Whitehair S, Asmussen J, Nakanishi S. Demonstration of a new electrothermal thruster concept[J]. Applied Physics Letters, 1984, 44(10): 1014-1016. doi: 10.1063/1.94603
    [5] Clemens D E, Micci M M, Bilén S G, et al. Evaluation and optimization of an 8-GHz microwave electrothermal thruster[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2010: 6520.
    [6] Brandenburg J E, Kline J, Sullivan D. The microwave electro-thermal (MET) thruster using water vapor propellant[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 776-782. doi: 10.1109/TPS.2005.845252
    [7] Kamaritis M M E, Biswas S, Bilén S G. 30-GHz proof-of-concept microwave electrothermal thruster[C]//Presented at the 37th International Electric Propulsion Conference. 2022.
    [8] Wijnen M, Navarro-Cavallé J, Fajardo P. Mechanically amplified milli-newton thrust balance for direct Thrust measurements of electric thrusters for space propulsion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3505318.
    [9] Hey F G, Keller A, Braxmaier C, et al. Development of a highly precise micronewton thrust balance[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 234-239. doi: 10.1109/TPS.2014.2377652
    [10] Yoshikawa T, Tsukizaki R, Kuninaka H. Calibration methods for the simultaneous measurement of the impulse, mass loss, and average thrust of a pulsed plasma thruster[J]. Review of Scientific Instruments, 2018, 89: 095103. doi: 10.1063/1.5027047
    [11] Li Y H, Lien W C, Liu S W. Development of a hanging pendulum thrust stand for pulsed plasma thrusters[J]. Acta Astronautica, 2025, 234: 368-386. doi: 10.1016/j.actaastro.2025.05.003
    [12] Zhang Zhongkai, Zhang Guangchuan, Mao Renfan, et al. A combined measurement method of thrust vector and roll torque for low power Hall-effect thrusters[J]. Acta Astronautica, 2023, 213: 295-306. doi: 10.1016/j.actaastro.2023.09.011
    [13] 黄先科, 毛根旺, 胡伟. 水工质MPT参数设计与性能预估[J]. 机械科学与技术, 2011, 30(10): 1719-1723

    Huang Xianke, Mao Genwang, Hu Wei. The parameter design and performance estimation of the water fed microwave plasma thruster (MPT)[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(10): 1719-1723
    [14] Abaimov M D. Preliminary testing of a 17.8-ghz microwave electrothermal thruster for small spacecraft[D]. State College: The Pennsylvania State University, 2015: 6-9.
    [15] Yildiz M S, Celik M. Global energy transfer model of a microwave electrothermal thruster operating with helium propellant at 2.45-GHz frequency[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2314-2322. doi: 10.1109/TPS.2017.2723474
    [16] Hill P G, Peterson C R. Mechanics and thermodynamics of propulsion[M]. New York: Addison-Wesley Publishing Company, 1965: 7-63.
    [17] 赵承庆, 姜毅. 气体射流动力学[M]. 北京: 北京理工大学出版社, 1998: 48-54

    Zhao Chengqing, Jiang Yi. Gas jet dynamics[M]. Beijing: Beijing Institute of Technology Press, 1998: 48-54
  • 加载中
图(12)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-10-15
  • 录用日期:  2025-10-05
  • 网络出版日期:  2025-10-24

目录

    /

    返回文章
    返回