留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同地磁场模型对空间高能带电粒子运动的影响

刘振军 郝建红 薛碧曦 赵强 张芳 范杰清 董志伟

刘振军, 郝建红, 薛碧曦, 等. 不同地磁场模型对空间高能带电粒子运动的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250049
引用本文: 刘振军, 郝建红, 薛碧曦, 等. 不同地磁场模型对空间高能带电粒子运动的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250049
Liu Zhenjun, Hao Jianhong, Xue Bixi, et al. Effects of different geomagnetic field models on the motion of high-energy charged particles in space[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250049
Citation: Liu Zhenjun, Hao Jianhong, Xue Bixi, et al. Effects of different geomagnetic field models on the motion of high-energy charged particles in space[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250049

不同地磁场模型对空间高能带电粒子运动的影响

doi: 10.11884/HPLPB202638.250049
基金项目: 国家自然科学基金青年基金项目(12305218);
详细信息
    作者简介:

    刘振军,lzjzsbd@163.com

    通讯作者:

    薛碧曦,xue_bx@163.com

  • 中图分类号: TL7

Effects of different geomagnetic field models on the motion of high-energy charged particles in space

  • 摘要: 以蒙特卡罗软件Geant4中的MAGNETOCOSMIC程序为基础,通过计算模拟不同地磁场模型和地理位置发射时的粒子损失过程,探讨了地球磁场对人工辐射带中粒子运动和俘获的影响规律。首先,模拟了10MeV电子在不同经度和L值( L是赤道面上的空间映射点距地心距离与地球半径的比值) 下的发射,分析了在中心偶极子、偏心偶极子和国际地磁参考场(IGRF)三种地磁模型下电子的运动轨迹、损失锥角和俘获条件。结果显示:中心偶极子模型中电子的漂移轨迹相对规则且对称,而偏心偶极子模型则出现了不对称性,而 IGRF 模型则因其更精细的参数和更高的精度,展现了更复杂、不规则且更接近实际的轨迹;损失锥角随L值的变化关系中,IGRF模型下损失锥角最大,电子更难被地磁场俘获。其次,探讨了电子发射经度对损失过程的影响,尤其是在南大西洋异常区(SAA区)的损失过程。结果表明,当电子运动到靠近SAA中心的位置时会更容易发生漂移损失。
  • 图  1  质子回旋、回弹与漂移运动

    Figure  1.  Proton Cyclotron, Bounce, and Drift Motion

    图  2  电子回旋、回弹与漂移运动

    Figure  2.  Electron Cyclotron, Bounce and Drift Motion

    图  3  三种地磁场模型下电子的漂移轨迹

    Figure  3.  The electron drift trajectories under the three geomagnetic models

    图  4  发生回弹与漂移损失前的电子轨迹图

    Figure  4.  Electron Trajectory Diagram Prior to Rebound and Drift Loss

    图  5  三种地磁场模型下损失锥角和L值的关系

    Figure  5.  Relationship between the loss cone angle and the L value under three magnetic field models

    图  6  SAA区对电子漂移运动轨迹的影响

    Figure  6.  The influence of the SAA region on the drift trajectory of electrons

  • [1] 王建行, 项正, 马新, 等. 基于范艾伦卫星观测数据的地球辐射带电子能谱分布的统计分析[J]. 空间科学学报, 2024, 44(3): 446-457 doi: 10.11728/cjss2024.03.2023-0070

    Wang Jianhang, Xiang Zheng, Ma Xin, et al. Statistical analysis of distributions of electron energy spectra in the earth’s radiation belts based on van Allen probes observations[J]. Chinese Journal of Space Science, 2024, 44(3): 446-457 doi: 10.11728/cjss2024.03.2023-0070
    [2] 沈超, 刘振兴. 外辐射带动态演化的粒子模拟研究[J]. 空间科学学报, 2001, 21(3): 230-237 doi: 10.11728/cjss2001.03.20010305

    Shen Chao, Liu Zhenxing. Particle simulation on the dynamical evolution of radiation belt particles[J]. Chinese Journal of Space Science, 2001, 21(3): 230-237 doi: 10.11728/cjss2001.03.20010305
    [3] 孙晓婧, 林瑞淋, 刘四清, 等. 地磁场结构对静止轨道≥2 MeV高能电子分布的影响[J]. 地球物理学报, 2020, 63(10): 3604-3625

    Sun Xiaojing, Lin Ruilin, Liu Siqing, et al. Influence of geomagnetic field structure on ≥2 MeV electron distribution at the geostationary orbit[J]. Chinese Journal of Geophysics, 2020, 63(10): 3604-3625
    [4] 贾向红, 邹鸿, 许峰, 等. 中能电子成像仪探头的设计[J]. 强激光与粒子束, 2015, 27: 014005 doi: 10.3788/HPLPB20152701.14005

    Jia Xianghong, Zou Hong, Xu Feng, et al. Detector design of medium-energy electron imaging[J]. High Power Laser and Particle Beams, 2015, 27: 014005 doi: 10.3788/HPLPB20152701.14005
    [5] Huang Jinbei, Lyu Xingzhi, Tu Weichao, et al. Modeling the effects of drift orbit bifurcation on the magnetopause shadowing loss of radiation belt electrons[J]. Geophysical Research Letters, 2023, 50: e2023GL106359. doi: 10.1029/2023GL106359
    [6] Daly E J, Lemaire J, Heynderickx D, et al. Problems with models of the radiation belts[J]. IEEE Transactions on Nuclear Science, 1996, 43(2): 403-415. doi: 10.1109/23.490889
    [7] 傅承义, 陈运泰, 祁贵仲. 地球物理学基础[M]. 北京: 科学出版社, 1985: 246-250

    Fu Chengyi, Chen Yuntai, Qi Guizhong. Fundamentals of geophysics[M]. Beijing: Science Press, 1985: 246-250
    [8] 陈文磊, 谢伦. >0.3 MeV高能电子注入辐射带槽区事件的分析与预报[J]. 地球物理学报, 2010, 53(12): 2796-2804

    Chen Wenlei, Xie Lun. The analysis and forecast of the penetration of >0.3 MeV electrons to the slot region in radiation belt[J]. Chinese Journal of Geophysics, 2010, 53(12): 2796-2804
    [9] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101
    [10] 董顺成, 郭芳侠. 带电粒子在地磁场中的运动及Mathematica数值模拟[J]. 大学物理, 2023, 42(7): 53-60

    Dong Shuncheng, Guo Fangxia. Motion of charged particles in earth’s magnetic field and Mathematica numerical simulation[J]. College Physics, 2023, 42(7): 53-60
    [11] 方晓华, 濮祖荫. 漂移壳追踪方法与内辐射带的长期变化[J]. 空间科学学报, 2000, 20(2): 150-158 doi: 10.11728/cjss2000.02.150

    Fang Xiaohua, Pu Zuyin. Drift shell tracing method and the secular variation of inner radiation fluxes[J]. Chinese Journal of Space Science, 2000, 20(2): 150-158 doi: 10.11728/cjss2000.02.150
    [12] Badhwar G D, Konradi A. Conversion of omnidirectional proton fluxes into a pitch angle distribution[J]. Journal of Spacecraft and Rockets, 1990, 27(3): 350-352. doi: 10.2514/3.26148
    [13] Bortnik J, Inan U S, Bell T F. L dependence of energetic electron precipitation driven by magnetospherically reflecting whistler waves[J]. Journal of Geophysical Research: Space Physics, 2002, 107: 1150.
    [14] Selesnick R S, Blake J B, Mewaldt R A. Atmospheric losses of radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2003, 108: 1468.
    [15] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [16] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [17] 张俊杰, 彭国良, 任泽平. 高空核爆炸早期碎片等离子体模拟[J]. 现代应用物理, 2023, 14: 020401

    Zhang Junjie, Peng Guoliang, Ren Zeping. Plasma simulation for early-stage debris in high altitude nuclear explosions[J]. Modern Applied Physics, 2023, 14: 020401
    [18] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [19] Wang Jianguo, Zhang Dianhui, Liu Chunliang, et al. UNIPIC code for simulations of high power microwave devices[J]. Physics of Plasmas, 2009, 16: 033108. doi: 10.1063/1.3091931
    [20] 顾旭东, 赵正予, 倪彬彬, 等. 高空核爆炸形成人工辐射带的数值模拟[J]. 物理学报, 2009, 58(8): 5871-5878 doi: 10.7498/aps.58.5871

    Gu Xudong, Zhao Zhengyu, Ni Binbin, et al. Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physica Sinica, 2009, 58(8): 5871-5878 doi: 10.7498/aps.58.5871
    [21] Cunningham G S, Cowee M M. Incorporation of drift loss cone effects on the trapping of an artificial radiation belt into LANL's modeling capability[J]. Journal of Radiation Effects: Research and Engineering, 2017, 35(1): 45-50.
    [22] Allison J, Amako K, Apostolakis J, et al. Recent developments in GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 186-225.
    [23] Da Pieve F D, Koval N, Gu B, et al. Fundamentals of Monte Carlo particle transport and synergies with quantum dynamics for applications in ion-irradiated materials in Space and radiobiology[M]//Apostolova T, Kohanoff J, Medvedev N, et al. Tools for Investigating Electronic Excitation: Experiment and Multi-Scale Modelling. Madrid: Universidad Politécnica de Madrid, 2021: 345-374.
    [24] Tsyganenko N A. Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels[J]. Planetary and Space Science, 1987, 35(11): 1347-1358. doi: 10.1016/0032-0633(87)90046-8
    [25] Thébault E, Finlay C C, Beggan C D, et al. International Geomagnetic Reference Field: the 12th generation[J]. Earth, Planets and Space, 2015, 67: 79. doi: 10.1186/s40623-015-0228-9
    [26] 王春琴, 王世金, 朱光武, 等. 辐射带SAA区带电粒子环境中长期变化分析[C]//中国空间科学学会空间探测专业委员会第十六次学术会议论文集. 2003: 235-240

    Wang Chunqin, Wang Shijin, Zhu Guangwu, et al. Analysis of the medium- and long-term variations of the charged particle environment in the SAA region of the radiation belt[C]//Academic Conference of the Space Exploration Professional Committee of the Chinese Society of Space Research. 2003: 235-240
  • 加载中
图(6)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-19
  • 修回日期:  2025-10-28
  • 录用日期:  2025-08-28
  • 网络出版日期:  2025-11-15

目录

    /

    返回文章
    返回