留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电荷效应对低能超导直线加速器束流品质的影响

万鑫淼 任志强 廖文龙 骆小宝 常轩恺 朱彦东 陶德强 李智慧

万鑫淼, 任志强, 廖文龙, 等. 空间电荷效应对低能超导直线加速器束流品质的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250112
引用本文: 万鑫淼, 任志强, 廖文龙, 等. 空间电荷效应对低能超导直线加速器束流品质的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250112
Wan Xinmiao, Ren Zhiqiang, Liao Wenlong, et al. Influence of space-charge-effect on beam quality in the low-energy superconducting Linac[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250112
Citation: Wan Xinmiao, Ren Zhiqiang, Liao Wenlong, et al. Influence of space-charge-effect on beam quality in the low-energy superconducting Linac[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250112

空间电荷效应对低能超导直线加速器束流品质的影响

doi: 10.11884/HPLPB202638.250112
基金项目: 国家自然科学基金项目(11375122、11875197)
详细信息
    作者简介:

    万鑫淼,wxmjune26@163.com

    通讯作者:

    李智慧,lizhihui@scu.edu.cn

  • 中图分类号: O572.21+1

Influence of space-charge-effect on beam quality in the low-energy superconducting Linac

  • 摘要: 本文通过理论建模与数值模拟相结合,系统探究了在低能超导质子直线加速器内,加速过程中聚焦参数动态演化对空间电荷主导型包络不稳定性的影响机制,创新性地揭示了低能段双周期聚焦结构与束晕产生的内在关联。基于Vlasov-Poisson方程二阶偶模展开,构建了理论模型,设计零流强周期相移(σ0)局部突破90°的多种演化方案,全面探究了不同聚焦方案下,局部突破90°对束流品质的影响,并用多粒子模拟软件对低能、归一化均方根发射度0.2~0.4 π·mm·mrad的质子束进行了多粒子模拟验证;针对双周期聚焦结构特征,设计了相应的聚焦结构与束流匹配方案,通过粒子-束核模型对比分析了准周期与双周期结构的束晕形成机制差异,定量分析了纵向包络对横向束晕的耦合作用。研究结果表明,当空间电荷效应较弱(对应于较高的调谐因子ηη=带电流周期相移σ/零流强周期相移σ0)时,σ0可突破90°而不导致束流品质恶化;反之,当空间电荷效应较强(低η值)时,σ0的突破会激发共振并导致束流发射度显著增长,且这一效应在双组合四极透镜聚焦结构中尤为显著。二维/三维模型均证实,即便每个聚焦单元的σ0<90°,双周期结构仍会引发束流包络的不稳定性。二维模型研究结果显示,相较于准周期结构,双周期结构更易产生束晕现象,其中2∶1共振仍是束晕形成的主要原因。采用三维模型进一步研究纵向因素的影响时发现,三维束团纵向尺寸的变化会显著改变束核电荷密度分布,这一现象成为束晕形成的新机制。此外,高阶共振也在很大程度上促进了束晕的形成。研究还揭示了小周期结构数(N)与共振概率呈负相关关系。
  • 图  2  二维模拟时采用的周期结构

    Figure  2.  The periodic structure adopted in two-dimensional simulation

    图  1  不同聚焦方案对应的σ0

    Figure  1.  σ0 under different focusing schemes

    图  3  三维模拟时采用的周期结构

    Figure  3.  The periodic structure adopted in three-dimensional simulation

    图  4  不同聚焦方案与不同η所对应的束流出口发射度。

    Figure  4.  The beam outlet emittance (ε) corresponding to different focusing schemes and different η

    图  5  对应于不同的聚焦方案和不同的周期通道下的阻带。每幅图都显示了在不同η下束流σt的变化

    Figure  5.  Stopbands under different focusing schemes and different periodic channels. Each figure shows the variation of the beam current σt under different η

    图  6  η分别为0.6和0.7,聚焦方案为①,束流沿双组合四极透镜传输时,粒子在相空间的分布演化

    Figure  6.  The distribution evolution of particles in the phase space when η are 0.6 and 0.7 respectively, the focusing scheme is ①, and the beam is transported along the doublet

    图  7  三维模拟下不同聚焦方案与不同η所对应的束流出口发射度。

    Figure  7.  shows the beam outlet emissivity corresponding to different focusing schemes and different η in the three-dimensional simulation

    图  8  当聚焦方案分别为①和②,η = 0.6,束流沿双组合四极透镜传输时,粒子在相空间的分布演化

    Figure  8.  The distribution evolution of particles in the phase space when the focusing schemes are ① and ② respectively, η = 0.6, and the beam current is transported along the doublet

    图  9  双周期结构及其束流匹配示意图

    Figure  9.  Schematic diagram of the double periodic structure and its beam matching

    图  10  η = 0.4时数值模拟长距离传输时的包络示意图以及聚焦结构示意图。

    Figure  10.  The envelope schematic diagram and the focusing structure schematic diagram of the numerical simulation for long-distance transportation when η = 0.4

    图  11  多粒子模拟得到的包络仿真结果。上为完全周期结构,下为双周期结构

    Figure  11.  Schematic diagram of the envelope obtained from multi-particle simulation. The upper is in a complete periodic structure, and the lower part is in a double periodic structure

    图  12  粒子在入口和182米处相空间的分布。

    Figure  12.  Distribution of particles in the phase space of the entrance and 182m

    图  13  发射度主导的束流发生4∶1共振(η = 0.72),空间电荷主导的束流发生2∶1共振(η = 0.69)

    Figure  13.  The beam current dominated by emittance undergoes 4∶1 resonance (η = 0.72), and the beam current dominated by space charge undergoes 2∶1 resonance (η = 0.69)

    图  14  粒子与包络的运动轨迹, 这个粒子位于图13(b) 2∶1共振岛上

    Figure  14.  The motion trajectory of the particle and the envelope. This particle is located on the 2∶1 resonance island in Figure 13(b)

    图  15  横向包络和纵向包络的频谱分析。左为横向包络,右为纵向包络 (η=0.69)。

    Figure  15.  Transverse and longitudinal envelope spectrum Analysis. (η=0.69)

    图  16  粒子在相空间的类花生分布图

    Figure  16.  The peanut-like distribution of particles in the phase space

    图  17  在7个小周期结构传输的束流发生4∶1共振(η = 0.48),在5个小周期结构传输的束流发生4∶1和1∶1共振(η = 0.48)

    Figure  17.  shows that the beam transported in 7 small-period structures undergoes 4∶1 resonance (η = 0.48), and the beam current transported in 5 small-period structures undergoes 4∶1 and 1∶1 resonance (η = 0.48)

    图  18  包络频谱分析。上为7个小周期,下为5个小周期

    Figure  18.  Envelope spectrum Analysis. The upper part is 7 small periods, and the lower part is 5 small periods

    图  19  同一位置处粒子在相空间的分布图。

    Figure  19.  The distribution of particles at the same position in the phase space

    表  1  σ0的具体参数

    Table  1.   The specific parameters of logistic functions for σ0

    Scheme Max σ0 (°) Min σ0 (°) A1 A2 x0 p
    120 40 120 29.8312 26.3333 1.87755
    110 40 110 31.1023 26.3333 1.87755
    100 40 100 32.3734 26.3333 1.87755
    90 40 90 33.6445 26.3333 1.87755
    下载: 导出CSV
  • [1] Neutron Sciences Directorate[EB/OL]. http://neutrons.ornl.gov/media/pubs/.
    [2] Neutrino Factory[EB/OL]. http://www.nu.to.infn.it/Neutrino_Factory/.
    [3] 袁建东, 马力祯, 何源, 等. 超导直线加速器准直方案设计[J]. 北京测绘, 2019, 33(3): 285-290

    Yuan Jiandong, Ma Lizhen, He Yuan, et al. Design of alignment scheme for superconducting linear accelerator[J]. Beijing Surveying and Mapping, 2019, 33(3): 285-290
    [4] Jeon D O. Classification of space-charge resonances and instabilities in high-intensity linear accelerators[J]. Journal of the Korean Physical Society, 2018, 72(12): 1523-1530. doi: 10.3938/jkps.72.1523
    [5] Lund S M, Bukh B. Stability properties of the transverse envelope equations describing intense ion beam transport[J]. Physical Review Special Topics - Accelerators and Beams, 2004, 7: 024801. doi: 10.1103/PhysRevSTAB.7.024801
    [6] Ikegami M. Particle–core analysis of beam halo formation in anisotropic beams[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 435(3): 284-296.
    [7] Cheon Y L, Moon S H, Chung M, et al. Analysis on the stop band of fourth-order resonance in high-intensity linear accelerators[J]. Physics of Plasmas, 2020, 27: 063105. doi: 10.1063/5.0004651
    [8] Jeon D O. Experimental evidence of space charge driven resonances in high intensity linear accelerators[J]. Physical Review Accelerators and Beams, 2016, 19: 010101. doi: 10.1103/PhysRevAccelBeams.19.010101
    [9] Groening L, Barth W, Bayer W, et al. Experimental evidence of the 90° stop band in the GSI UNILAC[J]. Physical Review Letters, 2009, 102: 234801. doi: 10.1103/PhysRevLett.102.234801
    [10] Wangler T P, Allen C K, Chan K C D, et al. Beam-halo in mismatched proton beams[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 519(1/2): 425-431.
    [11] 孙纪磊, 阮玉芳, 肖帅, 等. 强流质子加速器束流剖面分布及束晕测量系统设计[J]. 强激光与粒子束, 2011, 23(01

    Sun Jilei, Ruan Yufang, Xiao Shuai, et al. Design of beam profile and halo measurement system for high-intensity RFQ accelerator[J]. High Power Laser and Particle Beams, 2011, 23
    [12] Li Zhihui, Cheng Peng, Geng Huiping, et al. Physics design of an accelerator for an accelerator-driven subcritical system[J]. Physical Review Accelerators and Beams, 2013, 16: 080101. doi: 10.1103/PhysRevSTAB.16.080101
    [13] Wangler T P, Crandall K R, Ryne R, et al. Particle-core model for transverse dynamics of beam halo[J]. Physical Review Accelerators and Beams, 1998, 1: 084201. doi: 10.1103/PhysRevSTAB.1.084201
    [14] Wang T S F. Particle-core study of halo dynamics in periodic-focusing channels[J]. Physical Review E, 2000, 61(1): 855-861. doi: 10.1103/PhysRevE.61.855
    [15] Hofmann I, Laslett L J, Smith L, et al. Stability of the Kapchinskij-Vladimirskij (K-V) distribution in long periodic transport systems[J]. Particle Accelerators, 1983, 13: 145-178.
    [16] Chernin D. Evolution of RMS beam envelopes in transport systems with linear X-Y coupling[J]. Particle Accelerators, 1988, 24: 29-44.
    [17] Struckmeier J, Reiser M. Theoretical studies of envelope oscillations and instabilities of mismatched intense charged-particle beams in periodic focusing channels[J]. Particle Accelerators, 1984, 14: 227-260.
    [18] Li Chao, Qin Qing. Space charge induced beam instability in periodic focusing channel[J]. Physics of Plasmas, 2015, 22: 023108. doi: 10.1063/1.4908546
    [19] Liu Yudong, Huang Liangsheng, Wang Sheng, et al. Impedances and beam instability in RCS/CSNS[J]. High Power Laser and Particle Beams, 2013, 25(2): 465-470. doi: 10.3788/HPLPB20132502.0465
    [20] Hofmann I. Stability of anisotropic beams with space charge[J]. Physical Review E, 1998, 57(4): 4713-4724. doi: 10.1103/PhysRevE.57.4713
    [21] 刘伟, 颜学庆, 郭之虞, 等. BNCT中子源用RFQ加速器[J]. 强激光与粒子束, 2007, 19(10): 1731-1734

    Liu Wei, Yan Xueqing, Guo Zhiyu, et al. RFQ accelerator used as neutron source for BNCT[J]. High Power Laser and Particle Beams, 2007, 19(10): 1731-1734
    [22] Gluckstern R L. Analytic model for halo formation in high current ion linacs[J]. Physical Review Letters, 1994, 73(9): 1247-1250. doi: 10.1103/PhysRevLett.73.1247
    [23] Qiang Ji, Ryne R D. Beam halo studies using a three-dimensional particle-core model[J]. Physical Review Accelerators and Beams, 2000, 3: 064201. doi: 10.1103/PhysRevSTAB.3.064201
    [24] Wan Xinmiao, Ren Zhiqiang, Liao Wenlong, et al. Beam halo studies of double-periodic focusing structures at the low-energy end of superconducting linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 1070: 170017. doi: 10.1016/j.nima.2024.170017
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-07
  • 修回日期:  2025-11-04
  • 录用日期:  2025-10-16
  • 网络出版日期:  2025-11-24

目录

    /

    返回文章
    返回