留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兆瓦级回旋管电子注性能及注-波互作用模拟分析

刘巧 吕游 陆瑞琪 赵其祥 曾旭 张亦弛 冯进军

刘巧, 吕游, 陆瑞琪, 等. 兆瓦级回旋管电子注性能及注-波互作用模拟分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250129
引用本文: 刘巧, 吕游, 陆瑞琪, 等. 兆瓦级回旋管电子注性能及注-波互作用模拟分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250129
Liu Qiao, Lv You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250129
Citation: Liu Qiao, Lv You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250129

兆瓦级回旋管电子注性能及注-波互作用模拟分析

doi: 10.11884/HPLPB202638.250129
基金项目: 国家自然科学基金项目(62361019); 广西电子信息材料构效关系重点实验室项目(桂科AD25069070)
详细信息
    作者简介:

    刘 巧,joeliuu2@gmail.com

    通讯作者:

    吕 游,zxqi@guet.edu.cn

  • 中图分类号: TN129

Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron

  • 摘要: 在考虑不同电子注性能(速度离散、电子注厚度、空间电荷效应、起振过程、单/双阳极结构)情况下,建立了完善的时域多模自洽非线性注-波互作用模型。以自研的兆瓦级170 GHz、TE25,10模式工作的回旋管为研究对象,系统分析了高频腔结构参数变化、起振电流、单/双阳极电子注电压调制及不同速度和电子注离散下的模式竞争情况。数值模拟研究表明:双阳极调制方式能明显抑制模式竞争,在电子注电压80 kV、电流40 A、磁场6.72 T、横纵速度比1.3的工作条件下,可实现1.35 MW输出功率和42.2%的互作用效率。
  • 图  1  互作用高频结构及主模的归一化电场幅值分布

    Figure  1.  Interaction circuit and the normalized electric field amplitude distribution of the main mode

    图  2  170 GHz、TE25.10模式回旋管高频腔体内主模的相位分布

    Figure  2.  Phase distribution of the main mode in the high-frequency cavity of a 170 GHz TE25.10 mode gyrotron

    图  3  腔体谐振频率和衍射Q值随着入口段倾角变化的关系

    Figure  3.  The relationship between the resonant frequency of the cavity and the diffraction Q value with the variation of the input section inclination angle

    图  4  腔体谐振频率和衍射Q值随着出口段倾角变化的关系

    Figure  4.  The relationship between the resonant frequency of the cavity and the diffraction Q value with the variation of the output section inclination angle

    图  5  主模TE+25.10及其附近主要竞争模式的起振电流随磁场变化情况

    Figure  5.  The variation of the starting current of the main mode TE+25.10 and its neighboring competing modes with the magnetic field

    图  6  单阳极和双阳极电子枪结构示意图

    Figure  6.  Structural diagrams of single-anode and dual-anode electron guns

    图  7  不同工作磁场下输出功率与互作用时间关系

    Figure  7.  The output power varied with interaction time under different magnetic field

    图  8  不同模式输出功率与磁场的关系当电压为80 kV,电流为40 A,速度比1.3,$ {R}_{g} $= 7.414 mm

    Figure  8.  Relationship between output power and magnetic field when the voltage is 80 kV, current is 40 A, $ \alpha $ is 1.3, $ {R}_{g} $= 7.414 mm

    图  9  模拟阴极电压与调制极电压在同一时刻达到稳定状态时,电压和调制电压随时间的变化

    Figure  9.  Simulated cathode voltage and modulation electrode voltage reaching stability simultaneously

    图  10  输出功率与互作用时间关系,当磁场为6.72 T,最终工作阴极电压为80 kV,阳极电压为28.5 kV,电流为40 A,速度比1.3,$ {R}_{g} $= 7.414 mm

    Figure  10.  Relationship between output power and interaction time when the magnetic field is 6.72 T, final operation cathode voltage is 80 kV, anode voltage is 28.5 kV, current is 40 A, $ \alpha $ is 1.3, $ {R}_{g} $= 7.414 mm

    图  11  电压和调制电压随时间的变化。

    Figure  11.  Simulated variation of cathode voltage and modulation electrode voltage

    图  12  不同调制状态下,输出功率与互作用时间关系,其中磁场为6.72 T,阴极电压为80 kV,电流为40 A,速度比为1.3,$ {R}_{g} $= 7.414 mm

    Figure  12.  Relationship between output power and interaction time under different modulation states when magnetic field is 6.72 T, cathode voltage is 80 kV, current is 40 A, $ \alpha $ is 1.3, $ {R}_{g} $= 7.414 mm

    图  15  电子注电压为76 kV,电流为45 A,磁场为6.71 T,横纵速度比为1.05,速度离散为10%,电子注厚度为$ \Delta R=3{R}_{L} $工作条件下注-波互作用结果

    Figure  15.  Beam-wave interaction results when magnetic field: 6.71 T, cathode voltage: 76 kV, current: 42 A, velocity ratio: 1.05, $ \delta {\mathrm{v}}_{\mathrm{t}}=10\mathrm{{\text{%}} } $, $ \Delta R=3{R}_{L} $

    图  13  170 GHz 兆瓦级回旋管实物图

    Figure  13.  The picture of 170 GHz, MW class gyrotron

    图  14  170 GHz, 兆瓦级回旋管测试结果

    Figure  14.  The tested results of 170 GHz, MW class gyrotron

    表  1  170 GHz TE25.10回旋管高频腔体的相关参数

    Table  1.   Relevant parameters of 170 GHz TE25.10 gyrotron high-frequency cavity

    $ {\boldsymbol{R}}_{\boldsymbol{in}} $$ {\boldsymbol{R}}_{\boldsymbol{m}} $$ {\boldsymbol{R}}_{\boldsymbol{out}} $$ {\boldsymbol{L}}_{\boldsymbol{1}} $$ {\boldsymbol{L}}_{\boldsymbol{2}} $$ {\boldsymbol{R}}_{\boldsymbol{1}} $$ {\boldsymbol{R}}_{\boldsymbol{2}} $$ {\boldsymbol{R}}_{\boldsymbol{3}} $$ {\boldsymbol{R}}_{\boldsymbol{4}} $$ \boldsymbol{\theta }/({^{\circ}}) $$ \boldsymbol{\beta }/({^{\circ}}) $$ {\boldsymbol{L}}_{\boldsymbol{3}} $$ \boldsymbol{\sigma } $/($ \boldsymbol{S}\cdot {\boldsymbol{m}}^{-\boldsymbol{1}} $)$ {\boldsymbol{Q}}_{\boldsymbol{diff}} $$ {\boldsymbol{Q}}_{\boldsymbol{ohm}} $$ {\boldsymbol{Q}}_{\boldsymbol{T}} $
    9.6$ \boldsymbol{\lambda } $10.1$ \lambda $10.8$ \lambda $4.1$ \lambda $$ 7.7\lambda $0$ 11.3\lambda $$ 11.3\lambda $053$ 5.6\lambda $1.5$ \times {10}^{7} $1630477251576
    下载: 导出CSV

    表  2  不同位置倒角半径时,腔体谐振频率$ \boldsymbol{f} $与衍射品质因数$ {\boldsymbol{Q}}_{\boldsymbol{d}\boldsymbol{i}\boldsymbol{f}\boldsymbol{f}} $

    Table  2.   Resonant frequency f and diffractive quality factor $ {Q}_{diff} $ at Different bevel radius positions

    No. $ {\boldsymbol{R}}_{\boldsymbol{1}}/\boldsymbol{\lambda } $ $ {\boldsymbol{R}}_{\boldsymbol{2}}/\boldsymbol{\lambda } $ $ {\boldsymbol{R}}_{\boldsymbol{3}}/\boldsymbol{\lambda } $ $ {\boldsymbol{R}}_{\boldsymbol{4}}/\boldsymbol{\lambda } $ $ \boldsymbol{f} $/GHz $ {\boldsymbol{Q}}_{\boldsymbol{d}\boldsymbol{i}\boldsymbol{f}\boldsymbol{f}} $
    1 0 0 0 0 169.41937 1681
    2 28.3 0 0 0 169.4197 1675.8
    2 0 5.7 0 0 169.4202 1668.6
    3 0 11.3 0 0 169.4215 1648.6
    4 0 17.0 0 0 169.4237 1617.1
    5 0 0 10 0 169.4197 1670
    6 0 0 11.3 0 169.4198 1653.7
    7 0 0 17.0 0 169.4198 1626.7
    8 0 5.7 5.7 0 169.4202 1663.4
    9 0 8.5 8.5 0 169.4208 1648.1
    10 0 11.3 11.3 0 169.42 1630
    11 0 14.2 14.2 0 169.4226 1601
    12 0 17.0 17.0 0 169.4238 1570.1
    13 0 11.3 11.3 11.3 169.4216 1631.7
    14 0 11.3 11.3 28.3 169.4217 1646.7
    15 11.3 11.3 11.3 28.3 169.4217 1646.7
    16 28.3 11.3 11.3 28.3 169.4217 1646.7
    下载: 导出CSV

    表  3  热腔计算参数

    Table  3.   Hot cavity calculation parameters

    Guiding center
    radius $ {\boldsymbol{R}}_{\boldsymbol{g}} $/mm
    Beam voltage
    $ {\boldsymbol{U}}_{\boldsymbol{b}} $/kV
    Modulation voltage
    $ {\boldsymbol{U}}_{\boldsymbol{m}\boldsymbol{o}\boldsymbol{d}} $/kV
    Voltage division
    ratio $ \boldsymbol{\eta } $/(%)
    Beam current
    $ {\boldsymbol{I}}_{\boldsymbol{b}} $/A
    Magnetic field
    $ {\boldsymbol{B}}_{\boldsymbol{z}} $/T
    Pitch factor
    α
    7.414 80 28.5 64 40 6.72 1.3
    下载: 导出CSV

    表  4  170 GHz TE25.10回旋管实测值与数值模拟值对比

    Table  4.   Comparison Between Measured and Simulated Values of a 170 GHz TE25,10 Gyrotron

    Parameter $ {\boldsymbol{U}}_{\boldsymbol{b}} $ (kV) $ {\boldsymbol{I}}_{\boldsymbol{b}} $(A) $ {\boldsymbol{B}}_{\boldsymbol{0}} $(T) $ \boldsymbol{\alpha } $ $ \Delta \boldsymbol{R} $(mm) $ \boldsymbol{\delta }{\boldsymbol{v}}_{\boldsymbol{t}} $ Output power (kW) Output frequency (GHz)
    Measured value 76 45 6.71 1.1 / / 710 169.65
    Simulated value 76 45 6.71 1.05 0.49 10% 720 169.482
    下载: 导出CSV
  • [1] 李志良, 冯进军, 刘本田, 等. 国际热核聚变装置用回旋管的现状及技术分析[J]. 真空电子技术, 2012(2): 47-54

    Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Current status and technical analysis of gyrotron for fusion applications[J]. Vacuum Electronics, 2012(2): 47-54
    [2] 安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042

    An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042
    [3] 胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388

    Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
    [4] Kariya T, Minami R, Imai T, et al. Development of high power gyrotrons for advanced fusion devices[J]. Nuclear Fusion, 2019, 59: 066009. doi: 10.1088/1741-4326/ab0e2c
    [5] Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005
    [6] Kariya T, Imai T, Minami R, et al. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies[J]. Nuclear Fusion, 2017, 57: 066001. doi: 10.1088/1741-4326/aa6875
    [7] Idei H, Kariya T, Imai T, et al. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak[J]. Nuclear Fusion, 2017, 57: 126045. doi: 10.1088/1741-4326/aa7c20
    [8] Nakashima Y, Ichimura K, Islam M S, et al. Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror[J]. Nuclear Fusion, 2017, 57: 116033. doi: 10.1088/1741-4326/aa7cb4
    [9] Xu Handong, Wang Xiaojie, Zhang Jian, et al. Recent progress of the development of a long pulse 140GHz ECRH system on EAST[J]. EPJ Web of Conferences, 2019, 203: 04002. doi: 10.1051/epjconf/201920304002
    [10] Erckmann V, Brand P, Braune H, et al. Electron cyclotron heating for W7-X: physics and technology[J]. Fusion Science and Technology, 2007, 52(2): 291-312. doi: 10.13182/FST07-A1508
    [11] Felch K, Blank M, Borchard P, et al. Recent ITER-relevant gyrotron tests[J]. Journal of Physics: Conference Series, 2005, 25(1): 13-23.
    [12] Dammertz G, Alberti S, Arnold A, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 808-818. doi: 10.1109/TPS.2002.801509
    [13] Gantenbein G, Erckmann V, Illy S, et al. 140 GHz, 1 MW CW gyrotron development for fusion applications—Progress and recent results[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 320-328. doi: 10.1007/s10762-010-9749-2
    [14] Dammertz G, Alberti S, Bariou D, et al. 140 GHz high-power gyrotron development for the stellarator W7-X[J]. Fusion Engineering and Design, 2005, 74(1/4): 217-221.
    [15] Felch K, Blank M, Borchard P, et al. Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasi-optical converter[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 558-569. doi: 10.1109/27.532938
    [16] Felch K, Blank M, Borchard P, et al. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications[J]. Nuclear Fusion, 2008, 48: 054008. doi: 10.1088/0029-5515/48/5/054008
    [17] Lohr J, Cengher M, Doane J L, et al. The multiple gyrotron system on the DIII-D tokamak[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 253-273. doi: 10.1007/s10762-010-9706-0
    [18] Bigot B. Progress toward ITER’s first plasma[J]. Nuclear Fusion, 2019, 59: 112001. doi: 10.1088/1741-4326/ab0f84
    [19] Oda Y, Ikeda R, Kajiwara K, et al. Development of the first ITER gyrotron in QST[J]. Nuclear Fusion, 2019, 59: 086014. doi: 10.1088/1741-4326/ab22c2
    [20] Krasilnikov A V, Abdyuhanov I M, Aleksandrov E V, et al. Progress with the ITER project activity in Russia[J]. Nuclear Fusion, 2015, 55: 104007. doi: 10.1088/0029-5515/55/10/104007
    [21] Ioannidis Z C, Rzesnicki T, Albajar F, et al. CW experiments with the EU 1-MW, 170-GHz industrial prototype gyrotron for ITER at KIT[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3885-3892. doi: 10.1109/TED.2017.2730242
    [22] Botton M, Antonsen T M, Levush B, et al. MAGY: a time-dependent code for simulation of slow and fast microwave sources[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 882-892. doi: 10.1109/27.700860
    [23] 刘巧. 高功率回旋管多模自洽非线性问题研究[D]. 成都: 电子科技大学, 2020: 36-45

    Liu Qiao. Multi-mode self-consistent non-linear research on high-power gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 36-45
    [24] Liu Yinghui, Liu Qiao, Niu Xinjian, et al. Design and experiment on a 95-GHz 400 kW-level gyrotron[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 434-437. doi: 10.1109/TED.2020.3036324
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-26
  • 修回日期:  2025-10-06
  • 录用日期:  2025-07-29
  • 网络出版日期:  2025-12-15

目录

    /

    返回文章
    返回