留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低能强流回旋加速器中子源双模成像靶站模拟研究

陆潞 安世忠 管锋平 魏素敏

陆潞, 安世忠, 管锋平, 等. 基于低能强流回旋加速器中子源双模成像靶站模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250168
引用本文: 陆潞, 安世忠, 管锋平, 等. 基于低能强流回旋加速器中子源双模成像靶站模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250168
Lu Lu, An Shizhong, Guan Fengping, et al. Simulation study of neutron source for bimodal imaging target system based on low energy hgh current cyclotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250168
Citation: Lu Lu, An Shizhong, Guan Fengping, et al. Simulation study of neutron source for bimodal imaging target system based on low energy hgh current cyclotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250168

基于低能强流回旋加速器中子源双模成像靶站模拟研究

doi: 10.11884/HPLPB202638.250168
详细信息
    作者简介:

    陆 潞,luluciae@163.com

  • 中图分类号: O571.53

Simulation study of neutron source for bimodal imaging target system based on low energy hgh current cyclotron

  • 摘要: 无损检测方法在各领域都上发挥着重要的作用,伽马射线、热中子成像均是重要的无损检测方法,各有优劣,在许多方面上具有互补性。热中子-伽马射线双模成像将两者融合,在兼具这两类射线检测方法优点的同时,与单一射线检测相比,还具有物质识别的能力。以原子能院正在研发的18 MeV回旋加速器为设计基础,利用质子加速器驱动的中子源可同时产生中子和伽马射线这一特性,通过模拟对双模成像中子源进行研究。其中选用具有高(p, n)反应截面的铍做中子靶产生中子,为得到热中子,用聚乙烯做中子慢化体和反射体。利用热中子和伽马束流在空间上的分布不同,通过设计在不同空间取向上分别引出这两种射线,实现一靶同时得到两种射线。此外,通过在聚乙烯上对中子引出口和伽马射线引出口的设计,进一步提高热中子束流和伽马射线束流的引出效率。
  • 图  1  不同能量质子与锂和铍的(p, n)反应截面及模拟得到的不同能量质子分别与锂和铍反应得到的中子产额

    Figure  1.  The (p, n) cross section of the reaction between different energy neutrons and Li or Be and neutron yields produced by different energy proton with Li or Be by simulation

    图  2  中子靶及冷却装置结构

    Figure  2.  The structure of the target and cooling unit

    图  3  模拟得到的中子靶产生的中子角度分布及中子能谱

    Figure  3.  The neutron angle distribution and the neutron energy distribution produced by the target by simulation

    图  4  模拟得到的中子靶产生的伽马射线角度分布及伽马射线能谱

    Figure  4.  The Gamma angle distribution and the Gamma energy distribution produced by the target by simulation

    图  5  18 MeV质子与中子靶反应产生的中子在聚乙烯中的碰撞位置分布

    Figure  5.  the distribution of neutron collision positions in PE

    图  6  聚乙烯内的热中子通量分布

    Figure  6.  The thermal neutron flux in the PE

    图  7  热中子引出口开设在不同位置处引出的热中子通量的模拟模型及模拟结果

    Figure  7.  The simulation model and simulation result of the thermal neutron flux extracted when the thermal neutron outlet is in different positions

    图  8  伽马引出口的模拟模型

    Figure  8.  The simulation model of the Gamma outlet

    图  9  当伽马射线引出口凹槽底面直径不同时, 伽马射线引出口处伽马射线剂量以及热中子引出口处的热中子通量

    Figure  9.  The Gamma dose at the Gamma outlet and the thermal neutron flux at the thermal neutron outlet when the diameter of the Gamma outlet underside is different

    图  10  双模成像靶站结构示意图

    Figure  10.  The structure of the neutron source for bimodel imaging

    图  11  热中子引出口处的中子能谱

    Figure  11.  The neutron energy spectrum at the thermal neutron outlet

    表  1  不同材料的慢化本领和减速比[22]

    Table  1.   The moderation ability and deceleration ratio of different materials

    moderator material slowing-down power/cm−1 gear ratio (thermal neutron)
    water 1.53 72
    polyethylene (PE) 1.84 64
    heavy water 0.37 12000
    graphite 0.064 170
    下载: 导出CSV

    表  2  模拟得到的18 MeV质子与铍靶反应产生的中子经过不同慢化材料后慢化体内最大热中子通量

    Table  2.   The max thermal neutron flux in the moderator when the neutrons produced by 18 MeV proton and Be are moderated by different moderator materials by simulation

    moderator material the most thermal neutron flux in the moderator/(n/(p·cm2))
    water 1.27×10−5
    polyethylene (PE) 7.42×10−5
    heavy water 3.87×10−5
    graphite 3.19×10−5
    下载: 导出CSV
  • [1] Anderson I S, McGreevy R L, Bilheux H Z. Neutron imaging and applications[M]. New York: Springer, 2009: 987.
    [2] Horn Q C, Yang S H. Morphology and spatial distribution of ZnO formed in discharged alkaline Zn/MnO2 AA cells[J]. Journal of the Electrochemical Society, 2003, 150: A652. doi: 10.1149/1.1566014
    [3] Tötzke C, Kardjilov N, Lenoir N, et al. What comes NeXT?—High-speed neutron tomography at ILL[J]. Optics Express, 2019, 27(20): 28640-28648. doi: 10.1364/OE.27.028640
    [4] De Beer F C. Neutron and X-ray tomography at Necsa[J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2008, 108: 613-620.
    [5] Clark T, Burca G, Boardman R, et al. Correlative X-ray and neutron tomography of root systems using cadmium fiducial markers[J]. Journal of Microscopy, 2020, 277(3): 170-178. doi: 10.1111/jmi.12831
    [6] Lehmann E H, Vontobel P, Deschler-Erb E, et al. Non-invasive studies of objects from cultural heritage[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1/3): 68-75.
    [7] Banhart J, Borbély A, Dzieciol K, et al. X-ray and neutron imaging–Complementary techniques for materials science and engineering[J]. International Journal of Materials Research, 2010, 101: 1069-1079.
    [8] Carminati A, Kaestner A, Lehmann P, et al. Monitoring water flow in soils, using neutron and gamma tomography[J]. PSI Sci Rep, 2005, 2006: 28-29.
    [9] Kaestner A P, Hovind J, Boillat P, et al. Bimodal imaging at ICON using neutrons and X-rays[J]. Physics Procedia, 2017, 88: 314-321. doi: 10.1016/j.phpro.2017.06.043
    [10] Fedrigo A, Marstal K, Bender Koch C, et al. Investigation of a Monturaqui Impactite by means of bi-modal X-ray and neutron tomography[J]. Journal of Imaging, 2018, 4: 72. doi: 10.3390/jimaging4050072
    [11] Lehmann E H, Mannes D, Kaestner A P, et al. The XTRA option at the NEUTRA facility—more than 10 years of Bi-modal neutron and X-ray imaging at PSI[J]. Applied Sciences, 2021, 11: 3825. doi: 10.3390/app11093825
    [12] Sinha V, Srivastava A, Lee H K, et al. Performance evaluation of a combined neutron and x-ray digital imaging system[C]//Proceedings of SPIE 8694, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2013. 2013: 86940R.
    [13] Mannes D, Schmid F, Frey J, et al. Combined neutron and X-ray imaging for non-invasive investigations of cultural heritage objects[J]. Physics Procedia, 2015, 69: 653-660. doi: 10.1016/j.phpro.2015.07.092
    [14] LaManna J M, Hussey D S, Baltic E, et al. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography[J]. Review of Scientific Instruments, 2017, 88: 113702. doi: 10.1063/1.4989642
    [15] Tengattini A, Lenoir N, Andò E, et al. NeXT-Grenoble, the neutron and X-ray tomograph in Grenoble[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 968: 163939. doi: 10.1016/j.nima.2020.163939
    [16] 丁大钊, 叶春堂, 赵志祥. 中子物理学: 原理、方法与应用[M]. 北京: 原子能出版社, 2001

    Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron physics[M]. Beijing: Atomic Energy Press, 2001
    [17] Anderson I S, Andreani C, Carpenter J M, et al. Research opportunities with compact accelerator-driven neutron sources[J]. Physics Reports, 2016, 654: 1-58. doi: 10.1016/j.physrep.2016.07.007
    [18] Baxter D V, Cameron J M, Derenchuk V P, et al. Status of the low energy neutron source at Indiana university[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1/4): 209-212.
    [19] Tasaki S, Nagae T, Hirose M, et al. Properties and possible applications of Kyoto University accelerator based neutron source (KUANS)[J]. Physics Procedia, 2014, 60: 181-185. doi: 10.1016/j.phpro.2014.11.026
    [20] Otake Y. RIKEN accelerator-driven compact neutron systems[C]//8th International Meeting of Union for Compact Accelerator-Driven Neutron Sources. 2020: 01009.
    [21] Xiao Yongshun, Chen Zhiqiang, Yang Yigang, et al. Development progress of the neutron imaging station in CPHS[J]. Physics Procedia, 2015, 69: 96-103. doi: 10.1016/j.phpro.2015.07.014
    [22] 陈伯显, 张智. 核辐射物理及探测学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011

    Chen Boxian, Zhang Zhi. Nuclear physics and detection[M]. Harbin: Harbin Engineering University Press, 2011
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-22
  • 修回日期:  2026-01-20
  • 录用日期:  2026-01-09
  • 网络出版日期:  2026-02-05

目录

    /

    返回文章
    返回