留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱发航天器太阳电池阵放电特性研究

杨小溢 刘宇明 王志浩 聂翔宇 王晶虎 王思展 杜嘉余

杨小溢, 刘宇明, 王志浩, 等. 激光诱发航天器太阳电池阵放电特性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250171
引用本文: 杨小溢, 刘宇明, 王志浩, 等. 激光诱发航天器太阳电池阵放电特性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250171
Yang Xiaoyi, Liu Yuming, Wang Zhihao, et al. Characterization of laser-induced spacecraft solar array discharges[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250171
Citation: Yang Xiaoyi, Liu Yuming, Wang Zhihao, et al. Characterization of laser-induced spacecraft solar array discharges[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250171

激光诱发航天器太阳电池阵放电特性研究

doi: 10.11884/HPLPB202638.250171
详细信息
    作者简介:

    杨小溢,yxk114919@163.com

    通讯作者:

    刘宇明,lyming2005@126.com

  • 中图分类号: V442

Characterization of laser-induced spacecraft solar array discharges

  • 摘要: 强激光在空间太阳能电站无线能量传输(WPT)过程中可能对其他航天器产生影响,特别是对航天器的太阳电池阵,可能诱发航天器太阳电池阵放电。掌握激光诱发航天器太阳电池阵放电特性,对支撑强激光无线能量传输技术发展有重要作用。开展激光能量与波长两个参量对激光诱发太阳能电池阵放电特性的影响研究。基于激光诱导等离子体理论和低地球轨道(LEO)等离子环境下的放电机理,分析了激光诱发太阳电池阵放电的机制,并基于该机制理论指定了激光诱发航天器太阳电池阵放电试验的试验参数。试验分析了532 nm波长不同能量激光诱发太阳电池阵放电的概率,并获取放电时间数据,建立时间概率分布曲线,通过二重泊松分布拟合,获得不同能量激光诱发太阳电池阵放电持续时间的概率函数;对比研究了相同能量下532 nm与266 nm两种波长激光诱发太阳电池阵放电的电流峰值以及持续时间概率函数。研究结果显示激光波长越短、能量越高,诱发太阳电池阵放电风险越高。
  • 图  1  三结砷化镓太阳电池阵示意图

    Figure  1.  Schematic diagram of a triple-junction GaAs solar cell array

    图  2  激光诱发太阳电池阵串间放电示意图

    Figure  2.  Schematic diagram of laser-induced inter-string discharges of solar arrays

    图  3  试验系统示意图

    Figure  3.  Schematic diagram of the test system

    图  4  试验电路图

    Figure  4.  Test circuit diagram

    图  5  激光诱发太阳电池放电现象

    Figure  5.  laser-induced solar cell discharge phenomenon

    图  6  不同能量激光诱发太阳电池持续时间分布曲线

    Figure  6.  distribution curves of laser-induced solar cell durations with different energies

    图  7  不同波长诱发太阳电池放电持续时间分布曲线

    Figure  7.  distribution curves of discharge duration of solar cells induced by different wavelengths

    图  8  激光诱发太阳电池放电电流峰值对比

    Figure  8.  comparison of peak laser-induced solar cell discharge currents

    表  1  材料参数以及汽化的最小激光能量[25-27]

    Table  1.   Material parameters and minimum laser energy for vaporization

    Materials $\rho $/(kg·m−3) $ {c_p} $/(J/(kg·K)) k/(W/(m·K)) $ {T_m} $/K $ {T_\upsilon } $/K $ L{}_m $/(kJ·kg−1) $ {L_\upsilon } $/(kJ·kg−1) $\alpha $ $ {E_{inm}} $/mJ
    Ge 5350 322 60 1211.15 3093.15 508 4600 1064 nm-0.5
    532 nm-0.6
    266 nm-0.9
    18.84
    15.70
    10.46
    GaAs 5370 322 60 1515.15 2466.15 746 956 1064 nm-0.4
    532 nm-0.65
    266 nm-0.93
    9.43
    5.80
    4.06
    Kapton 1350 815 0.28 823.15 973.15 230 275 1064 nm-0.0002
    532 nm-0.15
    266 nm-0.67
    178.47
    0.24
    0.05
    下载: 导出CSV

    表  2  试验系统参数

    Table  2.   Experimental system parameters

    pressure/PaPlasma density/m−3Electron temperature/eVWavelength/nmPulse width/nsSpot diameter/mmUb/VRb/MΩCext/nF
    4×10−31×1011~1×10122532/266511801050
    下载: 导出CSV

    表  3  试验结果

    Table  3.   Test results

    No. E/mJ Tmax/μs n1/(n0+ n1) PE/%
    1 22.75 740.95435 43/45 95.6
    2 16.54 665.58411 39/45 86.7
    3 11.69 514.85328 37/45 82.2
    4 8.25 235.67812 25/45 55.6
    5 4.81 106.33993 25/45 55.6
    下载: 导出CSV
  • [1] 李欣宇, 罗雨, 叶薇薇, 等. 无线电能传输技术在空间太阳能电站中的研究与应用现状分析[J]. 电子技术应用, 2024, 50(5): 111-115

    Li Xinyu, Luo Yu, Ye Weiwei, et al. Research and application status analysis of wireless power transfer technology in space solar power station[J]. Application of Electronic Technique, 2024, 50(5): 111-115
    [2] Li Wang. Overview on space solar power station[J]. Advances in Astronautics Science and Technology, 2022, 5(1): 1-2. doi: 10.1007/s42423-022-00101-z
    [3] Ding Yun, Yang Jingyu, Hao Yun. A review on coordinated control of formation configuration of space solar power station energy transmission system[J]. Journal of Aeronautics, Astronautics and Aviation, 2022, 54(1): 49-66.
    [4] Zhang Caiping, Zhang Chengning, Sharkh S M. Estimation of real-time peak power capability of a traction battery pack used in an HEV[C]//Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference. 2010: 1-6.
    [5] 仲元昌, 魏莹莹, 姚博文, 等. 空间太阳能电站的发展及关键技术综述[J]. 电源技术, 2019, 43(6): 1063-1066

    Zhong Yuanchang, Wei Yingying, Yao Bowen, et al. Development and key technologies of space solar power station[J]. Chinese Journal of Power Sources, 2019, 43(6): 1063-1066
    [6] Wang Jixiang, Zhong Mingliang, Wu Zhe, et al. Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system[J]. Applied Energy, 2022, 322: 119517. doi: 10.1016/j.apenergy.2022.119517
    [7] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1994, 74(12): 2248-2251.
    [8] 苏彬, 张琦, 张伟, 等. 空间三结砷化镓太阳电池的激光防护研究[J]. 电源技术, 2022, 46(9): 1030-1033

    Su Bin, Zhang Qi, Zhang Wei, et al. Study on the laser protection for space tri-junction GaAs solar cells[J]. Chinese Journal of Power Sources, 2022, 46(9): 1030-1033
    [9] 吕伟, 郄毅鹏, 苏彬. 激光器损伤太阳电池研究[C]//第二十七届全国化学与物理电源学术年会论文集. 2006: 484-485

    Lv Wei, Qie Yipeng, Su Bin. Laser damage solar cell research[C]//Proceedings of the 27th Annual Meeting of the National Academic Society for Chemical and Physical Power Supplies. 2006: 484-485
    [10] Qi Lei, Xie Yanxin, Liu Yali, et al. Thermal-stress distribution and damage characteristics of three-junction GaAs solar cell irradiated by continuous laser beam[J]. Optik, 2019, 198: 163284. doi: 10.1016/j.ijleo.2019.163284
    [11] 唐道远, 徐建明, 李云鹏, 等. 三结砷化镓太阳电池真空连续激光损伤效应[J]. 上海航天(中英文), 2020, 37(2): 54-60

    Tang Daoyuan, Xu Jianming, Li Yunpeng, et al. Damage effects of tri-junction GaAs solar cells irradiated by continuous wave laser in vacuum[J]. Aerospace Shanghai (Chinese & English), 2020, 37(2): 54-60
    [12] 常浩, 陈一夫, 周伟静, 等. 纳秒激光脉冲辐照太阳能电池损伤特性及对光电转化的影响[J]. 红外与激光工程, 2021, 50: 20210296 doi: 10.3788/IRLA20210296

    Chang Hao, Chen Yifu, Zhou Weijing, et al. Damage characteristics of the solar cells irradiated by nanosecond pulsed lasers and the effects on photoelectric conversion[J]. Infrared and Laser Engineering, 2021, 50: 20210296 doi: 10.3788/IRLA20210296
    [13] 陆健, 谢知健, 张宏超. 连续激光辐照硅太阳电池损伤特性的光束诱导电流表征[J]. 红外与激光工程, 2022, 51: 20220022 doi: 10.3788/IRLA20220022

    Lu Jian, Xie Zhijian, Zhang Hongchao. Light beam induced current mapping to characterize damage characteristics of silicon solar cell irradiated by continuous-wave laser[J]. Infrared and Laser Engineering, 2022, 51: 20220022 doi: 10.3788/IRLA20220022
    [14] Li Sai, Huang Longcheng, Ye Jifei, et al. Study on radiation damage of silicon solar cell electrical parameters by nanosecond pulse laser[J]. Electronics, 2024, 13(9): 1795. doi: 10.3390/electronics13091795
    [15] Solin J R. Ground based laser triggered discharges on satellite solar arrays[C]//Proceedings of SPEI 5991, Laser-Induced Damage in Optical Materials. 2005: 59912E.
    [16] Li Hongwei, Han Jianwei, Cai Minghui, et al. The analogue experiment of small space debris impact inducing solar array discharge[J]. International Journal of Impact Engineering, 2020, 143: 103582. doi: 10.1016/j.ijimpeng.2020.103582
    [17] 尉德杰, 朱立颖, 武建文, 等. LEO航天器太阳电池阵激光诱导电弧放电试验与分析[J]. 航天器工程, 2024, 33(1): 131-137

    Wei Dejie, Zhu Liying, Wu Jianwen, et al. Laser-induced arc discharge experiment and analysis of LEO spacecraft solar array[J]. Spacecraft Engineering, 2024, 33(1): 131-137
    [18] 刘业楠, 朱立颖, 王志浩, 等. 太阳电池阵表面充电反向电位梯度的地面模拟[J]. 航天器环境工程, 2022, 39(5): 468-474

    Liu Yenan, Zhu Liying, Wang Zhihao, et al. Ground simulation of inverted potential gradient for solar panel surface charging[J]. Spacecraft Environment Engineering, 2022, 39(5): 468-474
    [19] 黄建国, 刘国青, 姜利祥, 等. 高压太阳电池阵诱发的航天器充电及放电机理[J]. 中国科学: 地球科学, 2015, 45(1): 43-51 doi: 10.1360/zd-2015-45-1-43

    Huang Jianguo, Liu Guoqing, Jiang Lixiang, et al. Mechanisms of spacecraft charging and discharging induced by high voltage solar arrays[J]. Scientia Sinica Terrae, 2015, 45(1): 43-51 doi: 10.1360/zd-2015-45-1-43
    [20] 朱立颖, 乔明, 刘业楠, 等. LEO航天器高压大功率太阳电池阵静电放电试验与分析[J]. 航天器工程, 2015, 24(4): 65-70

    Zhu Liying, Qiao Ming, Liu Yenan, et al. Test and analysis on electrostatic discharge of high voltage and high power solar array for LEO spacecraft[J]. Spacecraft Engineering, 2015, 24(4): 65-70
    [21] 刘瑜琛. 激光触发真空开关初始等离子体动力学特性的数值模拟研究[D]. 武汉: 华中科技大学, 2022: 14-43

    Liu Yuchen. Numerical simulation on the initial plasma dynamics in a laser-triggered vacuum switch[D]. Wuhan: Huazhong University of Science and Technology, 2022: 14-43
    [22] 张黎, 付博, 黄元杰, 等. 激光烧蚀等离子体射流与固体靶相互作用实验研究[J]. 强激光与粒子束, 2022, 34: 011013

    Zhang Li, Fu Bo, Huang Yuanjie, et al. Experimental investigation of plasma jet and solid target interaction based on laser-ablation launching approach[J]. High Power Laser and Particle Beams, 2022, 34: 011013
    [23] Ikeda Y, Soriano J K. Analysis of the characteristics of microwave-enhanced laser-induced atmospheric air plasma and ablation plasma for Al target[J]. Talanta Open, 2023, 7: 100172. doi: 10.1016/j.talo.2022.100172
    [24] 谢小柱, 黄显东, 陈蔚芳, 等. 脉冲绿激光划切蓝宝石基片过程研究[J]. 中国激光, 2013, 40: 1203010 doi: 10.3788/CJL201340.1203010

    Xie Xiaozhu, Huang Xiandong, Chen Weifang, et al. Study on scribing of sapphire substrate by pulsed green laser irradiation[J]. Chinese Journal of Lasers, 2013, 40: 1203010 doi: 10.3788/CJL201340.1203010
    [25] 郭士慧, 慈明儒, 刘昆, 等. 高能激光对典型空中目标的毁伤能力研究[J]. 激光与光电子学进展, 2024, 61: 1514010

    Guo Shihui, Ci Mingru, Liu Kun, et al. Ability of high-energy laser in combating typical air targets[J]. Laser & Optoelectronics Progress, 2024, 61: 1514010
    [26] 周海娇, 孙文军, 刘中洋. 脉冲激光辐照GaAs材料热效应研究[J]. 光子学报, 2014, 43: 1116005 doi: 10.3788/gzxb20144311.1116005

    Zhou Haijiao, Sun Wenjun, Liu Zhongyang. Research of nonlinear absorption effect of pulse laser irradiation for GaAs[J]. Acta Photonica Sinica, 2014, 43: 1116005 doi: 10.3788/gzxb20144311.1116005
    [27] 王畅鸥, 翟磊, 高梦岩, 等. 聚酰亚胺薄膜材料的热膨胀行为研究进展[J]. 中国科学: 化学, 2022, 52(3): 437-451 doi: 10.1360/SSC-2021-0205

    Wang Chang’ou, Zhai Lei, Gao Mengyan, et al. Research progress in thermal expansion behavior of polyimide films[J]. Scientia Sinica Chimica, 2022, 52(3): 437-451 doi: 10.1360/SSC-2021-0205
    [28] 童慧峰, 唐志平. 激光与固体靶面烧蚀等离子体的能量耦合计算[J]. 高压物理学报, 2008, 22(2): 142-148

    Tong Huifeng, Tang Zhiping. Simulation of energy coupling of laser and ablated plasma at target surface[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 142-148
    [29] ISO 11221: 2011, Space systems – space solar panels – spacecraft charging induced electrostatic discharge test methods[S].
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  44
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-11
  • 修回日期:  2025-09-28
  • 录用日期:  2025-09-09
  • 网络出版日期:  2025-11-24

目录

    /

    返回文章
    返回