留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积循环神经网络的核素识别方法研究

单岩松 张江梅 刘灏霖 张草林

单岩松, 张江梅, 刘灏霖, 等. 基于卷积循环神经网络的核素识别方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250174
引用本文: 单岩松, 张江梅, 刘灏霖, 等. 基于卷积循环神经网络的核素识别方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250174
Shan Yansong, Zhang Jiangmei, Liu Haolin, et al. Research on nuclide identification method based on convolutional recurrent neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250174
Citation: Shan Yansong, Zhang Jiangmei, Liu Haolin, et al. Research on nuclide identification method based on convolutional recurrent neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250174

基于卷积循环神经网络的核素识别方法研究

doi: 10.11884/HPLPB202638.250174
基金项目: 四川省揭榜挂帅项目(24zs9102)
详细信息
    作者简介:

    单岩松,2331642102@qq.com

    通讯作者:

    张江梅,zjm@swust.edu.cn

  • 中图分类号: TL817

Research on nuclide identification method based on convolutional recurrent neural network

  • 摘要: 核素的准确识别是提高放射性监测水平的关键。为进一步提升放射性核素识别性能,研究了基于卷积神经网络(CNN)和循环神经网络(RNN)结合的核素识别方法。使用碘化钠能谱仪采集8种单一和混合放射性核素γ能谱数据,通过计算γ光子在不同能量下的概率密度,采用随机抽样的方法生成大量γ能谱训练数据,并对数据进行归一化处理,然后利用CNN提取输入能谱数据的特征向量,并将提取到的特征向量输入RNN进行训练,最后由激活函数输出核素分类结果。为验证CNN-RNN识别核素的准确性,与基于卷积神经网络(CNN)和长短时记忆神经网络(LSTM)核素识别方法进行比较分析,得出在测试集上LSTM能谱模型对单核素的识别准确率优于97.5%,混合核素的识别率优于92.31%,CNN和CNN-RNN能谱模型对单核素的识别准确率为100%,混合核素的识别率分别优于92.95%和97.44%。结果表明,CNN-RNN能谱模型在γ能谱放射性核素识别中表现更优,通过与仅用实测数据训练的神经网络模型相比,加入增强数据可提升模型的训练效率和泛化能力。
  • 图  1  不同计数比值生成的60Co能谱数据

    Figure  1.  Gamma spectra of the nuclide 60Co obtained under different counting ratios

    图  2  CNN-RNN核素识别模型结构图

    Figure  2.  The structure diagram of the CNN-RNN nuclide identification model

    图  3  训练集损失曲线及评价结果

    Figure  3.  Training set loss curves and evaluation results

    图  4  验证集损失曲线及评价结果

    Figure  4.  Validation set loss curves and evaluation results

    图  5  各模型训练集和验证集的损失曲线

    Figure  5.  Loss curves of training set and validation set for each model

    图  6  实测数据各模型训练集和验证集损失曲线

    Figure  6.  The measured data of the training set and validation set loss curves for each model

    表  1  评价指标与计算方法

    Table  1.   Evaluation metrics and calculation methods

    name of evaluation
    indicator
    calculation method of
    evaluation indicator
    the name of macro-average
    evaluation indicator
    calculation method of macro-average
    evaluation indicator
    precision (P) $P = TP/(TP + FP)$ macro precision ($P_{Macro}$) $P_{Macro} = \dfrac{{\displaystyle\sum\nolimits_{i = 1}^n {P_i} }}{n}$
    recall (R) $R = TP/(TP + FN)$ macro recall ($R_{Macro}$) $R_{Macro} = \dfrac{{\displaystyle\sum\nolimits_{i = 1}^n {R_i} }}{n}$
    $F1{\text{ }}score$ $F1 = (2 \times P \times R)/(P + R)$ macro F1 ($F1_{Macro}$) $F1_{Macro} = \dfrac{{\displaystyle\sum\nolimits_{i = 1}^n {F1_i} }}{n}$
    下载: 导出CSV

    表  2  实验测量γ能谱测试数据统计表

    Table  2.   Experimental measurement of gamma spectra test data statistics table

    species quantity
    137Cs 60
    60Co 60
    152Eu 40
    40K 40
    137Cs+60Co 60
    137Cs+152Eu 39
    60Co+152Eu 60
    137Cs+60Co+152Eu 39
    low-count spectra 12
    下载: 导出CSV

    表  3  核素识别结果准确率

    Table  3.   Nuclide identification accuracy

    model name accuracy/%
    137Cs 60Co 152Eu 40K 137Cs+60Co 137Cs+152Eu 60Co+152Eu 137Cs+60Co+152Eu
    LSTM 100 100 97.5 100 100 92.31 95.42 94.87
    CNN 100 100 100 100 100 94.87 98.75 92.95
    CNN-RNN 100 100 100 100 100 100 98.75 97.44
    下载: 导出CSV

    表  4  低计数能谱预测结果

    Table  4.   Prediction results of low-count spectra

    model name predicted probability total counts
    152Eu 60Co 137Cs 40K
    CNN-RNN 0.0001 0.0093 0.9999 0.0004 1743
    0.0001 0.0042 0.9999 0.0005 1768
    0.0001 0.0054 0.9999 0.0005 2916
    CNN 0 0.9823 1.0000 0 1743
    0 0.0104 1.0000 0 1768
    0 1.0000 1.0000 0 2916
    LSTM 0.0001 0.0023 0.9951 0.005 1743
    0 0.002 0.6439 0.7839 1768
    0.0004 0.0028 0.9989 0.0004 2916
    下载: 导出CSV

    表  5  各模型训练过程收敛所需训练步数和训练时长

    Table  5.   The number of training steps and the duration required for convergence during the training process of each model

    modeltraining stepstraining time/s
    increase datano increase dataincrease datano increase data
    LSTM2616094567
    CNN114050127
    CNN-RNN114052124
    下载: 导出CSV

    表  6  实测数据训练模型核素识别结果准确率

    Table  6.   The accuracy of radionuclide identification results from the model trained with measured data

    model name accuracy/%
    137Cs 60Co 152Eu 40K 137Cs+60Co 137Cs+152Eu 60Co+152Eu 137Cs+60Co+152Eu
    LSTM 100 96.67 96.25 100 100 91.67 95 92.31
    CNN 100 100 98.75 100 100 91.67 96.67 90.38
    CNN-RNN 100 100 98.75 100 100 94.87 99.17 93.59
    下载: 导出CSV
  • [1] 王晓涛, 周启甫, 陈栋梁. 我国核技术利用发展现状及存在的问题探讨[J]. 中国辐射卫生, 2012, 21(4): 468-469 doi: 10.13491/j.cnki.issn.1004-714x.2012.04.018

    Wang Xiaotao, Zhou Qifu, Chen Dongliang. A discussion on the current development status and existing problems of nuclear technology utilization in China[J]. Chinese Journal of Radiological Health, 2012, 21(4): 468-469 doi: 10.13491/j.cnki.issn.1004-714x.2012.04.018
    [2] Li X, Dong C, Zhang Q, et al. Research and design of a rapid nuclide recognition system[J]. Journal of Instrumentation, 2022, 17: T06008.
    [3] Dess B W, Cardarelli J, Thomas M J, et al. Automated detection of radioisotopes from an aircraft platform by pattern recognition analysis of gamma-ray spectra[J]. Journal of Environmental Radioactivity, 2018, 192: 654-666. doi: 10.1016/j.jenvrad.2018.02.012
    [4] 岳昌啓, 牛德青. 放射性核素能谱分析方法综述[J]. 兵工自动化, 2023, 42(6): 44-47

    Yue Changqi, Niu Deqing. Review of radionuclide energy spectrum analysis method[J]. Ordnance Industry Automation, 2023, 42(6): 44-47
    [5] 卢大宇. 基于Resnet和DCGAN的少样本复杂核素识别研究[D]. 抚州: 东华理工大学, 2024: 13-15

    Lu Dayu. Research on complex nuclide identification with few samples based on Resnet and DCGAN[D]. Fuzhou: East China University of Technology, 2024: 13-15
    [6] He Jianping, Tang Xiaobin, Gong Pin, et al. Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network[J]. Annals of Nuclear Energy, 2018, 112: 1-8. doi: 10.1016/j.anucene.2017.09.032
    [7] 贺楠, 吕会议, 王波, 等. 基于人工神经网络的核素识别方法[J]. 兵工自动化, 2022, 41(3): 91-96

    He Nan, Lyu Huiyi, Wang Bo, et al. Nuclide identification method based on artificial neural network[J]. Ordnance Industry Automation, 2022, 41(3): 91-96
    [8] 王瑶, 刘志明, 万亚平, 等. 基于长短时记忆神经网络的能谱核素识别方法[J]. 强激光与粒子束, 2020, 32: 106001

    Wang Yao, Liu Zhiming, Wan Yaping, et al. Energy spectrum nuclide recognition method based on long short-term memory neural network[J]. High Power Laser and Particle Beams, 2020, 32: 106001
    [9] 唐琪, 周伟, 李治和, 等. 卷积神经网络核素识别算法研究[J]. 核电子学与探测技术, 2021, 41(3): 437-442

    Tang Qi, Zhou Wei, Li Zhihe, et al. Research on nuclide identification algorithm of convolutional neural network[J]. Nuclear Electronics & Detection Technology, 2021, 41(3): 437-442
    [10] 杜晓闯, 梁漫春, 黎岢, 等. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986 doi: 10.16511/j.cnki.qhdxxb.2023.22.011

    Du Xiaochuang, Liang Manchun, Li Ke, et al. A gamma radionuclide identification method based on convolutional neural networks[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(6): 980-986 doi: 10.16511/j.cnki.qhdxxb.2023.22.011
    [11] Sun Jiaqian, Niu Deqing, Liang Jie, et al. Rapid nuclide identification algorithm based on self-attention mechanism neural network[J]. Annals of Nuclear Energy, 2024, 207: 110708. doi: 10.1016/j.anucene.2024.110708
    [12] Daniel G, Ceraudo F, Limousin O, et al. Automatic and real-time identification of radionuclides in gamma-ray spectra: a new method based on convolutional neural network trained with synthetic data set[J]. IEEE Transactions on Nuclear Science, 2020, 67(4): 644-653. doi: 10.1109/TNS.2020.2969703
    [13] Van Hiep C, Hung D T, Anh N N, et al. Nuclide identification algorithm for the large-size plastic detectors based on artificial neural network[J]. IEEE Transactions on Nuclear Science, 2022, 69(6): 1203-1211. doi: 10.1109/TNS.2022.3173371
    [14] Kim B J. Comparison of heart failure prediction performance using various machine learning techniques[J]. International Journal of Internet, Broadcasting and Communication, 2024, 16(4): 290-300.
    [15] Rasdi Rere L M, Fanany M I, Arymurthy A M. Metaheuristic algorithms for convolution neural network[J]. Computational Intelligence and Neuroscience, 2016, 2016: 1537325.
    [16] 赵红伟, 李朋, 程振飞. 基于Faster R-CNN图像处理的光伏并网变电站运行故障检测方法[J]. 电工技术, 2025(1): 27-29,32

    Zhao Hongwei, Li Peng, Cheng Zhenfei. Fault detection method for photovoltaic grid connected substations based on faster R-CNN image processing[J]. Electric Engineering, 2025(1): 27-29,32
    [17] 杨进, 李阳, 曾辉, 等. 深度学习在水下目标检测与腐蚀评估中的应用进展[J]. 腐蚀与防护, 2024, 45(9): 57-66

    Yang Jin, Li Yang, Zeng Hui, et al. Application advance of deep learning in underwater target detection and corrosion assessment[J]. Corrosion and Protection, 2024, 45(9): 57-66
    [18] Abbaspour S, Fotouhi F, Sedaghatbaf A, et al. A comparative analysis of hybrid deep learning models for human activity recognition[J]. Sensors, 2020, 20: 5707. doi: 10.3390/s20195707
    [19] 杨祎玥, 伏潜, 万定生. 基于深度循环神经网络的时间序列预测模型[J]. 计算机技术与发展, 2017, 27(3): 35-38,43

    Yang Yiyue, Fu Qian, Wan Dingsheng. A prediction model for time series based on deep recurrent neural network[J]. Computer Technology and Development, 2017, 27(3): 35-38,43
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-16
  • 修回日期:  2025-11-17
  • 录用日期:  2025-11-08
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回