留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形波前泵浦实现小型化高光束质量气体拉曼激光

刘振松 徐铭昊 王颜超 刘宇辉 蔡向龙 徐明 孙景露 宋素雅 李庆伟 郭敬为

刘振松, 徐铭昊, 王颜超, 等. 锥形波前泵浦实现小型化高光束质量气体拉曼激光[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250178
引用本文: 刘振松, 徐铭昊, 王颜超, 等. 锥形波前泵浦实现小型化高光束质量气体拉曼激光[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250178
Liu Zhensong, Xu Minghao, Wang Yanchao, et al. Conical wavefront pumping enabling miniaturized gaseous Raman laser with high beam quality[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250178
Citation: Liu Zhensong, Xu Minghao, Wang Yanchao, et al. Conical wavefront pumping enabling miniaturized gaseous Raman laser with high beam quality[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250178

锥形波前泵浦实现小型化高光束质量气体拉曼激光

doi: 10.11884/HPLPB202638.250178
基金项目: 中国科学院科研仪器设备研制项目(YJKYYQ20190041)
详细信息
    作者简介:

    刘振松,liuzhensong@dicp.ac.cn

    通讯作者:

    李庆伟,liqw@dicp.ac.cn

    郭敬为,jingweiguo@dicp.ac.cn

  • 中图分类号: TN248

Conical wavefront pumping enabling miniaturized gaseous Raman laser with high beam quality

  • 摘要: 为了实现拉曼激光装置的小型化并抑制激光诱导击穿现象,利用锥透镜将泵浦激光调制成贝塞尔光束以实现受激拉曼变频。实验结果表明,增益介质的气压,泵浦光的直径,锥透镜的底角均对光子转化效率产生影响。在3.5 MPa甲烷中,1064 nm波长、366 mJ脉冲能量的泵浦光能够产生128 mJ的1543 nm前向拉曼激光,光子转化效率达到50.7%,且有望在更高气压和更高泵浦能量下实现更高转化效率。遮挡锥透镜中心圆角尖端,仍可保留97 mJ的拉曼激光脉冲能量,此时光束质量β=2.19。实验验证了拉曼池可设计为长度0.4 m而不损坏窗口。综合多个实验结果可以推论,在不牺牲转化效率的前提下,拉曼池可以进一步缩短至0.3 m。通过轴向移动锥透镜在长拉曼池内的位置,可调节前后向斯托克斯光的输出比例。
  • 图  1  锥透镜及其用于产生贝塞尔光束的示意图

    Figure  1.  Schematic diagram of the axicon and schematic diagram of generating a Bessel beam using an axicon to modulate the wavefront

    图  2  使用不同方案聚焦400 mJ/8 ns泵浦光(Φ8 mm)在光轴上功率密度分布的模拟结果

    Figure  2.  Simulation results of the power density distribution along the optical axis for the 400 mJ/8 ns pump light (Φ8 mm) focused by different schemes

    图  3  实验装置示意图

    Figure  3.  Schematic diagram of the experimental setup

    图  4  泵浦光在不同气压下,经位置1处锥透镜会聚后,FS1 PCE随着泵浦脉冲能量的变化曲线(Φ8 mm);并与3.5 MPa下经$ f=0.5\;\mathrm{m} $透镜聚焦的情形作对比

    Figure  4.  Curves of FS1 PCE versus pump pulse energy (Φ8 mm) with the pump light focused through an axicon at Position 1 under different pressures, compared with the case using an $ f=0.5\;\mathrm{m} $ lens under 3.5 MPa pressure

    图  5  锥透镜置于位置1时,在不同光斑直径或光束发散角下,FS1 PCE随着泵浦脉冲能量的变化曲线(3.5 MPa)

    Figure  5.  when the axicon was placed at Position 1, curves of FS1 PCE versus pump pulse energy under different pump spot diameters or pump beam divergence angles (3.5 MPa)

    图  6  不同等效锥透镜底角下,S1 PCE随着泵浦脉冲能量的变化曲线(3.5 MPa,Φ8 mm)

    Figure  6.  Curves of S1 PCE versus pump pulse energy under different equivalent axicon base angles (3.5 MPa, Φ8 mm)

    图  7  凸透镜聚焦和不同等效底角锥透镜聚焦的情形下,输出3 mJ FS1对应泵浦能量阈值的实验值和理论值

    Figure  7.  In the cases of focusing with a convex lens and axicons of different equivalent base angles, experimental and theoretical value of pump energy threshold corresponding to 3 mJ FS1 output

    图  8  紧凑拉曼池设计的模拟实验中,S1 PCE随着泵浦脉冲能量的变化曲线(3.5 MPa,Φ6 mm)

    Figure  8.  Curves of S1 PCE versus pump pulse energy in the simulation experiment of compact Raman cell design (3.5 MPa, Φ6 mm)

    图  9  在锥透镜的最优空间姿态下,S1 PCE随着泵浦脉冲能量的变化曲线(3.5 MPa,Φ8 mm)。

    Figure  9.  Curves of S1 PCE versus pump pulse energy under the optimal spatial configuration of the axicon (3.5 MPa, Φ8 mm)

    图  10  用刀口法测定的FS1束腰数据(取Φ10 mm处为$ z=0\;\mathrm{mm} $

    Figure  10.  Data of measuring FS1 beam waist by the knife-edge method (the position of Φ10 mm was set as $ {\textit{z}}=0\;\mathrm{mm} $)

    表  1  分别使用$ f=0.5\;\mathrm{m} $透镜和不同底角锥透镜聚焦泵浦光(Φ8 mm,400 mJ,8 ns),模拟出的最高功率密度和焦深

    Table  1.   Simulated maximum power density and depth of focus by focusing pump light (Φ8 mm, 400 mJ, 8 ns) using an $ f=0.5\;\mathrm{m} $ lens and axicons with different base-angles, respectively

    f/m base-angles/
    (°)
    maximum power
    density/(TW cm−2)
    depth of focus /m
    (50% power density)
    gain length /m
    (10% power density)
    convex lens 0.5 0.897 0.030 0.050
    axicon 0.5 0.066 0.367 0.961
    1 0.130 0.208 0.471
    2 0.244 0.118 0.217
    3 0.346 0.084 0.156
    5 0.541 0.054 0.094
    10 1.084 0.027 0.046
    下载: 导出CSV
  • [1] White J C. Stimulated Raman scattering[M]//Mollenauer L F, White J C. Tunable Lasers. Berlin, Heidelberg: Springer, 1987: 115-207.
    [2] Cai Xianglong, Xu Ming, Qian Feiyu, et al. High efficiency stimulated rotational Raman scattering of hydrogen pumped by 1064 nm[J]. Applied Optics, 2024, 63(2): 543-548. doi: 10.1364/AO.510370
    [3] Song Suya, Sun Jinglu, Qian Feiyu, et al. High beam quality and high peak power 1.6 µm deuterium Raman laser[J]. Optics Letters, 2024, 49(21): 6085-6088. doi: 10.1364/OL.538316
    [4] Sun Jinglu, Cai Xianglong, Xu Ming, et al. High-efficiency anti-stokes Raman blue laser in CO2 enables high-luminance RGB laser-driven white light[J]. Results in Optics, 2024, 16: 100691. doi: 10.1016/j.rio.2024.100691
    [5] Morgan C G. Laser-induced breakdown of gases[J]. Reports on Progress in Physics, 1975, 38(5): 621-665. doi: 10.1088/0034-4885/38/5/002
    [6] Golub I. Superluminal-source-induced emission[J]. Optics Letters, 1995, 20(18): 1847-1849. doi: 10.1364/OL.20.001847
    [7] Klewitz S, Sogomonian S, Woerner M, et al. Stimulated Raman scattering of femtosecond Bessel pulses[J]. Optics Communications, 1998, 154(4): 186-190. doi: 10.1016/S0030-4018(98)00317-4
    [8] Grabtchikov A S, Chulkov R V, Orlovich V A, et al. Observation of Raman conversion for 70-fs pulses in KGd(WO4)2 crystal in the regime of impulsive stimulated Raman scattering[J]. Optics Letters, 2003, 28(11): 926-928. doi: 10.1364/OL.28.000926
    [9] Herminghaus S, Klewitz S, Leiderer P, et al. Stimulated scattering of Bessel beams[C]//Proceedings of SPIE 2700, Nonlinear Frequency Generation and Conversion. 1996: 437-446.
    [10] Niggl L, Maier M. Efficient conical emission of stimulated Raman Stokes light generated by a Bessel pump beam[J]. Optics Letters, 1997, 22(12): 910-912. doi: 10.1364/OL.22.000910
    [11] Sogomonian S, Klewitz S, Herminghaus S. Self-reconstruction of a Bessel beam in a nonlinear medium[J]. Optics Communications, 1997, 139(4/6): 313-319.
    [12] Sogomonian S, Schwarz U T, Maier M. Phase-front transformation of a first-order Bessel beam in Raman-resonant four-wave mixing[J]. Journal of the Optical Society of America B, 2001, 18(4): 497-504. doi: 10.1364/JOSAB.18.000497
    [13] Belyi V N, Khilo N A, Orlovic V A, et al. Modal theory and output patterns of Stokes radiation in SRS: generation at pump with Bessel light beams[C]//Proceedings of SPIE 4751, ICONO 2001: Nonlinear Optical Phenomena and Nonlinear Dynamics of Optical Systems. 2002: 389-394.
    [14] Chulkov R V, Grabtchikov A S, Busko D N, et al. Beam quality improvement at Raman conversion of multimode conical beam[J]. Journal of the Optical Society of America B, 2006, 23(6): 1109-1116. doi: 10.1364/JOSAB.23.001109
    [15] Landgraf B, Hoffmann A, Kartashov D, et al. Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers[J]. Optics Express, 2015, 23(6): 7400-7406. doi: 10.1364/OE.23.007400
    [16] Hanna D, Pointer D, Pratt D. Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane[J]. IEEE Journal of Quantum Electronics, 1986, 22(2): 332-336. doi: 10.1109/JQE.1986.1072945
    [17] Kazzaz A, Ruschin S, Shoshan I, et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 1994, 30(12): 3017-3024. doi: 10.1109/3.362703
    [18] Zheng Tiancheng, Cai Xianglong, Li Zhonghui, et al. Stimulated Raman scattering in CH4 gas using single cylindrical lens focusing[J]. Optics Communications, 2021, 493: 126987. doi: 10.1016/j.optcom.2021.126987
    [19] Qian Feiyu, Cai Xianglong, He Shutong, et al. Miniaturization of high beam quality 1.543 μm Raman laser with backward stimulated Raman scattering[J]. Optics Communications, 2025, 574: 131136. doi: 10.1016/j.optcom.2024.131136
    [20] 刘筱奕, 王帅帅, 刘照东, 等. 受激拉曼散射脉宽压缩技术研究进展[J]. 激光与光电子学进展, 2023, 60: 1700008

    Liu Xiaoyi, Wang Shuaishuai, Liu Zhaodong, et al. Research progress of pulse duration compression via stimulated Raman scattering[J]. Laser & Optoelectronics Progress, 2023, 60: 1700008
    [21] Shen Chencheng, Cai Xianglong, Su Xinjun, et al. Wavelength-tunable narrow-linewidth gaseous Raman laser[J]. Applied Optics, 2021, 60(18): 5465-5470. doi: 10.1364/AO.424400
    [22] Sasnett M W, Johnston T J. Beam characterization and measurement of propagation attributes[C]//Proceedings of SPIE 1414, Laser Beam Diagnostics. 1991: 21-32.
    [23] Sun J L, Jia Y X, Cai X L, et al. Inhibiting effect of topological charge on laser-induced breakdown of gases: miniaturization of an SRS laser with vortex Raman outputs[J]. ACS Photonics, 2024, 11(5): 2035-2044. doi: 10.1021/acsphotonics.4c00204
    [24] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 1987, 4(4): 651-654. doi: 10.1364/JOSAA.4.000651
    [25] 张睿迪, 段亚轩, 达争尚. 基于计算全息的高质量贝塞尔光束阵列产生方法[J]. 光子学报, 2023, 52: 0909001 doi: 10.3788/gzxb20235209.0909001

    Zhang Ruidi, Duan Yaxuan, Da Zhengshang. High quality Bessel beam array generation method based on computer generated holography[J]. Acta Photonica Sinica, 2023, 52: 0909001 doi: 10.3788/gzxb20235209.0909001
    [26] Niggl L, Maier M. Gain-guided modes in stimulated scattering processes with diffraction-free pump beams[J]. Optics Communications, 1998, 154(1/3): 65-69.
    [27] Sogomonian S, Niggl L, Maier M. Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam[J]. Optics Communications, 1999, 162(4/6): 261-266.
    [28] Weber H. Propagation of higher-order intensity moments in quadratic-index media[J]. Optical and Quantum Electronics, 1992, 24(9): S1027-S1049. doi: 10.1007/BF01588604
    [29] ISO 11146-1: 2021, Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios: Part 1: Stigmatic and simple astigmatic beams[S].
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-19
  • 修回日期:  2025-11-18
  • 录用日期:  2025-11-08
  • 网络出版日期:  2025-11-25

目录

    /

    返回文章
    返回