Conical wavefront pumping enabling miniaturized gaseous Raman laser with high beam quality
-
摘要: 为了实现拉曼激光装置的小型化并抑制激光诱导击穿现象,利用锥透镜将泵浦激光调制成贝塞尔光束以实现受激拉曼变频。实验结果表明,增益介质的气压,泵浦光的直径,锥透镜的底角均对光子转化效率产生影响。在3.5 MPa甲烷中,
1064 nm波长、366 mJ脉冲能量的泵浦光能够产生128 mJ的1543 nm前向拉曼激光,光子转化效率达到50.7%,且有望在更高气压和更高泵浦能量下实现更高转化效率。遮挡锥透镜中心圆角尖端,仍可保留97 mJ的拉曼激光脉冲能量,此时光束质量β=2.19。实验验证了拉曼池可设计为长度0.4 m而不损坏窗口。综合多个实验结果可以推论,在不牺牲转化效率的前提下,拉曼池可以进一步缩短至0.3 m。通过轴向移动锥透镜在长拉曼池内的位置,可调节前后向斯托克斯光的输出比例。Abstract:Background Different applications require lasers of different wavelengths, and Raman laser is one of effective methods to expand spectral range of lasers. Raman lasers have advantages of high conversion efficiency, excellent beam quality, excellent scalability and wide range coverage etc. However, the cumbersome size of Raman cell (especially the long length of Raman cell) deteriorates the application of Raman laser. To reduce the length of Raman cell, a short-focus lens is required, and this would lead laser-induced breakdown (LIB).Purpose To realize miniaturization of Raman laser devices while suppressing LIB, this work proposed a method to modulate the pump laser into a Bessel beam to achieve stimulated Raman frequency conversion using an axicon. The goal is to achieve high photon conversion efficiency (PCE) and beam quality in a compact system.Methods By the comparison of intensity at focus and depth of focus of f = 0.5 m focal lens and axicon, axicon with bottle angle of 2° could effectively reduce laser intensity at focus and increase the depth of focus. In this work, a pulsed1064 nm laser was used as pump source, pressurized methane was used as Raman medium, and axicon with bottle angle of 2° was used to focus pump laser. Pressure of methane, pump laser divergence angles and diameter of pump beam were optimized to achieve the maximum conversion efficiency.Results In 3.5 MPa methane and 366 mJ energy of1064 nm pump laser, 128 mJ forward Raman laser at1543 nm was generated; the corresponding photon conversion efficiency was 50.7%, and higher output energy and conversion efficiency were expected under higher pressure and at higher pump energy. By blocking the central rounded apex of the axicon, the Raman laser pulse energy of 97 mJ can still be retained with the beam quality β=2.19. An experiment verified that the Raman cell can be designed to be 0.4 m without damaging the window. Based on the results of multiple experiments, it can be inferred that the Raman cell can be further shortened to 0.3 m without sacrificing the conversion efficiency. By axially translating the axicon within an extended cell, the forward/backward Stokes light ratio became tunable.Conclusions This study demonstrates the viability of Bessel beams for compact, high-efficiency gaseous Raman lasers. The conical wavefront pumping strategy mitigate LIB risks and enable system miniaturization, offering a promising pathway for practical applications.-
Key words:
- lasers and laser optics /
- nonlinear optics /
- axicon /
- miniaturization /
- stimulated Raman scattering
-
图 4 泵浦光在不同气压下,经位置1处锥透镜会聚后,FS1 PCE随着泵浦脉冲能量的变化曲线(Φ8 mm);并与3.5 MPa下经
$ f=0.5\;\mathrm{m} $ 透镜聚焦的情形作对比Figure 4. Curves of FS1 PCE versus pump pulse energy (Φ8 mm) with the pump light focused through an axicon at Position 1 under different pressures, compared with the case using an
$ f=0.5\;\mathrm{m} $ lens under 3.5 MPa pressure表 1 分别使用
$ f=0.5\;\mathrm{m} $ 透镜和不同底角锥透镜聚焦泵浦光(Φ8 mm,400 mJ,8 ns),模拟出的最高功率密度和焦深Table 1. Simulated maximum power density and depth of focus by focusing pump light (Φ8 mm, 400 mJ, 8 ns) using an
$ f=0.5\;\mathrm{m} $ lens and axicons with different base-angles, respectivelyf/m base-angles/
(°)maximum power
density/(TW cm−2)depth of focus /m
(50% power density)gain length /m
(10% power density)convex lens 0.5 0.897 0.030 0.050 axicon 0.5 0.066 0.367 0.961 1 0.130 0.208 0.471 2 0.244 0.118 0.217 3 0.346 0.084 0.156 5 0.541 0.054 0.094 10 1.084 0.027 0.046 -
[1] White J C. Stimulated Raman scattering[M]//Mollenauer L F, White J C. Tunable Lasers. Berlin, Heidelberg: Springer, 1987: 115-207. [2] Cai Xianglong, Xu Ming, Qian Feiyu, et al. High efficiency stimulated rotational Raman scattering of hydrogen pumped by 1064 nm[J]. Applied Optics, 2024, 63(2): 543-548. doi: 10.1364/AO.510370 [3] Song Suya, Sun Jinglu, Qian Feiyu, et al. High beam quality and high peak power 1.6 µm deuterium Raman laser[J]. Optics Letters, 2024, 49(21): 6085-6088. doi: 10.1364/OL.538316 [4] Sun Jinglu, Cai Xianglong, Xu Ming, et al. High-efficiency anti-stokes Raman blue laser in CO2 enables high-luminance RGB laser-driven white light[J]. Results in Optics, 2024, 16: 100691. doi: 10.1016/j.rio.2024.100691 [5] Morgan C G. Laser-induced breakdown of gases[J]. Reports on Progress in Physics, 1975, 38(5): 621-665. doi: 10.1088/0034-4885/38/5/002 [6] Golub I. Superluminal-source-induced emission[J]. Optics Letters, 1995, 20(18): 1847-1849. doi: 10.1364/OL.20.001847 [7] Klewitz S, Sogomonian S, Woerner M, et al. Stimulated Raman scattering of femtosecond Bessel pulses[J]. Optics Communications, 1998, 154(4): 186-190. doi: 10.1016/S0030-4018(98)00317-4 [8] Grabtchikov A S, Chulkov R V, Orlovich V A, et al. Observation of Raman conversion for 70-fs pulses in KGd(WO4)2 crystal in the regime of impulsive stimulated Raman scattering[J]. Optics Letters, 2003, 28(11): 926-928. doi: 10.1364/OL.28.000926 [9] Herminghaus S, Klewitz S, Leiderer P, et al. Stimulated scattering of Bessel beams[C]//Proceedings of SPIE 2700, Nonlinear Frequency Generation and Conversion. 1996: 437-446. [10] Niggl L, Maier M. Efficient conical emission of stimulated Raman Stokes light generated by a Bessel pump beam[J]. Optics Letters, 1997, 22(12): 910-912. doi: 10.1364/OL.22.000910 [11] Sogomonian S, Klewitz S, Herminghaus S. Self-reconstruction of a Bessel beam in a nonlinear medium[J]. Optics Communications, 1997, 139(4/6): 313-319. [12] Sogomonian S, Schwarz U T, Maier M. Phase-front transformation of a first-order Bessel beam in Raman-resonant four-wave mixing[J]. Journal of the Optical Society of America B, 2001, 18(4): 497-504. doi: 10.1364/JOSAB.18.000497 [13] Belyi V N, Khilo N A, Orlovic V A, et al. Modal theory and output patterns of Stokes radiation in SRS: generation at pump with Bessel light beams[C]//Proceedings of SPIE 4751, ICONO 2001: Nonlinear Optical Phenomena and Nonlinear Dynamics of Optical Systems. 2002: 389-394. [14] Chulkov R V, Grabtchikov A S, Busko D N, et al. Beam quality improvement at Raman conversion of multimode conical beam[J]. Journal of the Optical Society of America B, 2006, 23(6): 1109-1116. doi: 10.1364/JOSAB.23.001109 [15] Landgraf B, Hoffmann A, Kartashov D, et al. Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers[J]. Optics Express, 2015, 23(6): 7400-7406. doi: 10.1364/OE.23.007400 [16] Hanna D, Pointer D, Pratt D. Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane[J]. IEEE Journal of Quantum Electronics, 1986, 22(2): 332-336. doi: 10.1109/JQE.1986.1072945 [17] Kazzaz A, Ruschin S, Shoshan I, et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 1994, 30(12): 3017-3024. doi: 10.1109/3.362703 [18] Zheng Tiancheng, Cai Xianglong, Li Zhonghui, et al. Stimulated Raman scattering in CH4 gas using single cylindrical lens focusing[J]. Optics Communications, 2021, 493: 126987. doi: 10.1016/j.optcom.2021.126987 [19] Qian Feiyu, Cai Xianglong, He Shutong, et al. Miniaturization of high beam quality 1.543 μm Raman laser with backward stimulated Raman scattering[J]. Optics Communications, 2025, 574: 131136. doi: 10.1016/j.optcom.2024.131136 [20] 刘筱奕, 王帅帅, 刘照东, 等. 受激拉曼散射脉宽压缩技术研究进展[J]. 激光与光电子学进展, 2023, 60: 1700008Liu Xiaoyi, Wang Shuaishuai, Liu Zhaodong, et al. Research progress of pulse duration compression via stimulated Raman scattering[J]. Laser & Optoelectronics Progress, 2023, 60: 1700008 [21] Shen Chencheng, Cai Xianglong, Su Xinjun, et al. Wavelength-tunable narrow-linewidth gaseous Raman laser[J]. Applied Optics, 2021, 60(18): 5465-5470. doi: 10.1364/AO.424400 [22] Sasnett M W, Johnston T J. Beam characterization and measurement of propagation attributes[C]//Proceedings of SPIE 1414, Laser Beam Diagnostics. 1991: 21-32. [23] Sun J L, Jia Y X, Cai X L, et al. Inhibiting effect of topological charge on laser-induced breakdown of gases: miniaturization of an SRS laser with vortex Raman outputs[J]. ACS Photonics, 2024, 11(5): 2035-2044. doi: 10.1021/acsphotonics.4c00204 [24] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 1987, 4(4): 651-654. doi: 10.1364/JOSAA.4.000651 [25] 张睿迪, 段亚轩, 达争尚. 基于计算全息的高质量贝塞尔光束阵列产生方法[J]. 光子学报, 2023, 52: 0909001 doi: 10.3788/gzxb20235209.0909001Zhang Ruidi, Duan Yaxuan, Da Zhengshang. High quality Bessel beam array generation method based on computer generated holography[J]. Acta Photonica Sinica, 2023, 52: 0909001 doi: 10.3788/gzxb20235209.0909001 [26] Niggl L, Maier M. Gain-guided modes in stimulated scattering processes with diffraction-free pump beams[J]. Optics Communications, 1998, 154(1/3): 65-69. [27] Sogomonian S, Niggl L, Maier M. Nonplanar phase-matching of stimulated anti-Stokes Raman scattering pumped by a Bessel beam[J]. Optics Communications, 1999, 162(4/6): 261-266. [28] Weber H. Propagation of higher-order intensity moments in quadratic-index media[J]. Optical and Quantum Electronics, 1992, 24(9): S1027-S1049. doi: 10.1007/BF01588604 [29] ISO 11146-1: 2021, Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios: Part 1: Stigmatic and simple astigmatic beams[S]. -
下载:





