留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲下SF6气体中闪络电压预测方法研究

孙楚昱 陈伟 王海洋 汲胜昌

孙楚昱, 陈伟, 王海洋, 等. 纳秒脉冲下SF6气体中闪络电压预测方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250181
引用本文: 孙楚昱, 陈伟, 王海洋, 等. 纳秒脉冲下SF6气体中闪络电压预测方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250181
Sun Chuyu, Chen Wei, Wang Haiyang, et al. Research on prediction method of flashover voltage in SF6 gas under nanosecond pulse[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250181
Citation: Sun Chuyu, Chen Wei, Wang Haiyang, et al. Research on prediction method of flashover voltage in SF6 gas under nanosecond pulse[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250181

纳秒脉冲下SF6气体中闪络电压预测方法研究

doi: 10.11884/HPLPB202638.250181
详细信息
    作者简介:

    孙楚昱,sunchuyu@xjtu.stu.edu.cn

    通讯作者:

    汲胜昌,jsc@xjtu.edu.cn

  • 中图分类号: TM85

Research on prediction method of flashover voltage in SF6 gas under nanosecond pulse

  • 摘要: 纳秒脉冲下SF6中的沿面闪络涉及物理过程复杂,如何准确预测该环境下的绝缘介质沿面闪络电压是高压脉冲功率设备设计与绝缘可靠性评估的关键挑战。与传统工频或直流电压相比,纳秒脉冲极短的上升时间和高幅值导致空间电荷效应显著、放电发展机制迥异,使得基于经典理论的预测模型面临严峻挑战。近年来,随着计算机算力的飞速提升和人工智能算法的突破性进展,基于数据驱动的机器学习方法在解决复杂非线性绝缘问题中展现出了巨大潜力。针对纳秒脉冲下这一特定难题,选取了支持向量机、多层感知机、随机森林和极端梯度提升树等四种算法对15~500 mm多尺度距离范围内不同实验条件下的闪络电压数据进行了训练和预测,其预测结果的ROC 曲线下面积(AUC)值均在0.9以上,表现最优的是支持向量机算法。同时,为了验证预测模型的准确性,选取表现较为优异的支持向量机模型对另选取的100 mm距离数据进行了预测,AUC值达到0.99,这表明预测准确率高,可以认为模型具备较强的泛化性,从而验证了不同实验条件下基于数据驱动的SF6中闪络电压预测方法的可行性。
  • 图  1  典型MLP网络示意图

    Figure  1.  Schematic of a typical MLP network

    图  2  随机森林算法模型示意图

    Figure  2.  Schematic Diagram of RF network

    图  3  XGBoost算法模型示意图

    Figure  3.  Schematic Diagram of XGBoost network

    图  4  电压特征量的定义

    Figure  4.  The definition of the voltage feature values

    图  5  特征量间的相关系数

    Figure  5.  Results of the correlation coefficient between features

    图  6  超参数优化过程

    Figure  6.  Progress of hyperparameter optimization

    图  7  四种算法模型的预测结果

    Figure  7.  Prediction results of the four algorithms

    表  1  特征量列表

    Table  1.   The list of features

    Feature No.classfeatures
    X1surface distanceL
    X2voltage polarityUp
    X3gas pressurep
    X4voltage rise timetr
    X5voltage rise velocitydu/dt
    X6, X7voltage time featurest50,t89
    X8~X10maximum of electric fieldEmaxEmax_xEmax_y
    X11mean squared error of electric fieldEstd
    X12~X14average value of electric fieldEaveEave_xEave_y
    X15~X17nonuniformity of electric fieldEfEf_xEf_y
    X18~X20gradient of electric fieldEgaEga_xEga_y
    X21, X22sum of squares of electric fieldW、Wa
    X23~X25electric field integral of the sum of squaresWeWexWp
    X26~X28integral of electric fieldV90V90_xV90_y
    X29voltage amplitudeU
    Ywhether flashover occurs−1(unflashover) or 1(flashover)
    下载: 导出CSV

    表  2  输入特征量列表

    Table  2.   The list of input features

    feature No.classfeatures
    X1surface distanceL
    X2voltage polarityUp
    X3gas pressurep
    X4voltage rise timetr
    X5voltage rise velocitydu/dt
    X6, X7voltage time featurest50,t89
    X8, X9maximum of electric fieldEmaxEmax_y
    X10mean squared error of electric fieldEstd
    X11, X12average value of electric fieldEaveEave_y
    X13, X14nonuniformity of electric fieldEfEf_y
    X15~X17gradient of electric fieldEgaEga_xEga_y
    X18sum of squares of electric fieldWa
    X19, X20electric field integral of the sum of squaresWeWex
    X21integral of electric fieldV90
    X22voltage amplitudeU
    Ywhether flashover occurs−1(unflashover) or 1(flashover)
    下载: 导出CSV

    表  3  样本数据表

    Table  3.   The sample data table

    surface distance/mm tr and t50/ns electrodes gas pressure/MPa voltage polarity sample count
    15 70/271 needle-plane 0.1 positive 22
    negative 27
    0.2 positive 19
    negative 44
    0.3 positive 27
    negative 46
    rod-ring 0.1 positive 54
    negative 33
    0.2 positive 46
    negative 56
    0.3 positive 45
    negative 65
    plane-plane 0.1 positive 36
    negative 43
    0.2 positive 39
    negative 52
    0.3 positive 45
    negative 52
    50 110/1960 plane-plane 0.1 positive 27
    negative 29
    0.2 positive 23
    negative 19
    0.3 positive 28
    negative 19
    200 110/1960 plane-plane 0.1 positive 42
    negative 72
    0.2 positive 23
    negative 41
    0.3 positive 36
    negative 19
    300~500 230/1470 plane-plane 0.1 positive 44
    negative 92
    下载: 导出CSV

    表  4  四种算法的最优超参数组合

    Table  4.   The optimal hyperparameter combinations of the four algorithms

    algorithmshyperparametersoptimization rangeoptimal results
    SVMkernel functionpolynomial function, radial bases function and sigmoid functionradial bases function
    regularization coefficient10−210000679.17
    kernel function bias term−10~105.32
    kernel coefficient10−8~1006.06
    polynomial kernel function degree2~10none
    MLPthe number of neurons in the 1st hidden layer100~1000636
    the number of neurons in the 2nd hidden layer100~1000973
    learning rate10−3~16.52×10−3
    regularization coefficient10−4~10−22.49×10−4
    RFthe number of base models0~1000119
    maximum tree depth1~2516
    minimum number of samples to split2~306
    minimum leaf node weight1~204
    XGBoostthe number of base models0~1000761
    learning rate0.001~0.950.9
    maximum tree depth1~2512
    minimum leaf node weight0~52
    regularization coefficient0~52
    下载: 导出CSV

    表  5  四种算法的F1值与AUC值

    Table  5.   The F1 scores and AUC values of the four algorithms

    algorithmsdatasetF1AUC
    SVMtraining set0.91690.9659
    validation set0.88000.9496
    MLPtraining set0.90140.9435
    validation set0.86270.9200
    RFtraining set0.93320.9818
    validation set0.85350.9324
    XGBoosttraining set0.91970.9712
    validation set0.88000.9386
    下载: 导出CSV

    表  6  SVM和XGBoost算法对100mm实验的预测结果

    Table  6.   The prediction results of SVM and XGBoost for 100 mm experiments

    algorithmsF1AUC
    SVM0.86830.8961
    XGBoost0.82160.8520
    下载: 导出CSV
  • [1] 邱孟通, 呼义翔, 吴伟, 等. 西北核技术研究所强脉冲辐射模拟装置近年发展综述[J]. 现代应用物理, 2024, 15: 030101

    Qiu Mengtong, Hu Yixiang, Wu Wei, et al. Review of the development of intense pulsed radiation simulator and its technology in northwest institute of nuclear technology in the past decade[J]. Modern Applied Physics, 2024, 15: 030101
    [2] 朱湘琴, 吴伟, 王海洋. 大型水平极化电磁脉冲有界波模拟器的辐射场分布特性分析[J]. 现代应用物理, 2020, 11: 040502

    Zhu Xiangqin, Wu Wei, Wang Haiyang. Characteristics of radiation electric field distribution in large EMP bounded wave simulator with horizontal polarization[J]. Modern Applied Physics, 2020, 11: 040502
    [3] Peek F W. The law of corona and the dielectric strength of Air-IV the mechanism of corona formation and loss[J]. Transactions of the American Institute of Electrical Engineers, 1927, XLVI: 1009-1024.
    [4] Zaengl W S, Petcharaks K. Application of streamer breakdown criterion for inhomogeneous fields in dry air and SF6[M]//Christophorou L G, James D R. Gaseous Dielectrics VII. New York: Springer, 1994: 153-159.
    [5] Niemeyer L, Ullrich L, Wiegart N. The mechanism of leader breakdown in electronegative gases[J]. IEEE Transactions on Electrical Insulation, 1989, 24(2): 309-324. doi: 10.1109/14.90289
    [6] Seeger M, Niemeyer L, Bujotzek M. Partial discharges and breakdown at protrusions in uniform background fields in SF6[J]. Journal of Physics D: Applied Physics, 2008, 41: 185204. doi: 10.1088/0022-3727/41/18/185204
    [7] MartinT H, Guenther A H, Kristiansen M. J. C. Martin on pulsed power[M]. New York: Springer, 1996.
    [8] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defence Industry Press, 2005
    [9] Ghosh P S, Chlakravorti S, Chatterjee N. Estimation of time-to-flashover characteristics of contaminated electrolytic surfaces using a neural netlwork[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(6): 1064-1074.
    [10] 杨庆, 司马文霞, 蒋兴良, 等. 复杂环境条件下绝缘子闪络电压预测神经网络模型的建立及应用[J]. 中国电机工程学报, 2005, 25(13): 155-159

    Yang Qing, Sima Wenxia, Jiang Xingliang, et al. The building and application of a neural network model for forecasting the flashover voltage of the insulator in complex ambient conditions[J]. Proceedings of the CSEE, 2005, 25(13): 155-159
    [11] 石岩, 蒋兴良, 苑吉河. 基于RBF网络的覆冰绝缘子闪络电压预测模型[J]. 高电压技术, 2009, 35(3): 591-596

    Shi Yan, Jiang Xingliang, Yuan Jihe. Flashover voltage forecasting mode of iced insulator based on RBF network[J]. High Voltage Engineering, 2009, 35(3): 591-596
    [12] 王永强, 王巨伟, 张斌, 等. 基于FLN的覆雪绝缘子闪络电压预测方法[J]. 电瓷避雷器, 2017(6): 241-245

    Wang Yongqiang, Wang Juwei, Zhang Bin, et al. Study on prediction method of flashover voltage of snow-covered insulators based on FLN[J]. Insulators and Surge Arresters, 2017(6): 241-245
    [13] 舒立春, 白困利, 胡琴, 等. 基于支持向量机的复杂环境条件下绝缘子闪络电压的预测[J]. 中国电机工程学报, 2006, 26(17): 127-131

    Shu Lichun, Bai Kunli, Hu Qin, et al. Insulator flashover voltage forecasting under complex circumstance based on support vector machine[J]. Proceedings of the CSEE, 2006, 26(17): 127-131
    [14] 阮江军, 徐闻婕, 邱志斌, 等. 基于支持向量机的雾中棒–板间隙击穿电压预测[J]. 高电压技术, 2018, 44(3): 711-718

    Ruan Jiangjun, Xu Wenjie, Qiu Zhibin, et al. Breakdown voltage prediction of rod-plane gap in fog based on support vector machine[J]. High Voltage Engineering, 2018, 44(3): 711-718
    [15] Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1995: 138-146.
    [16] 邓乃扬, 田英杰. 支持向量机: 理论、算法和拓展[M]. 北京: 科学出版社, 2009: 43-62

    Deng Naiyang, Tian Yingjie. The theory, algorithm and application of support vector machine[M]. Beijing: Science Press, 2009: 43-62
    [17] 高同虎. 基于SVM的附着藻类绝缘子电场畸变与闪络电压预测研究[D]. 淄博: 山东理工大学, 2020

    Gao Tonghu. Prediction of electric field distortion and flashover voltage of algae-covered insulators based on SVM[D]. Zibo: Shandong University of Technology, 2020
    [18] 李云淏, 咸日常, 张海强, 等. 基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法[J]. 电网技术, 2023, 47(4): 1470-1477

    Li Yunhao, Xian Richang, Zhang Haiqiang, et al. Fault diagnosis for power transformers based on improved grey wolf algorithm coupled with least squares support vector machine[J]. Power System Technology, 2023, 47(4): 1470-1477
    [19] 郝蛟, 林宏, 李雨森, 等. 基于改进多层感知机的电网运行风险评估方法[J]. 现代电力, 2023, 40(4): 474-483

    Hao Jiao, Lin Hong, Li Yusen, et al. A method to assess power grid operation risk based on improved multi-layer perceptron[J]. Modern Electric Power, 2023, 40(4): 474-483
    [20] Hayati M, Rezaei A, Seifi M. CNT-MOSFET modeling based on artificial neural network: application to simulation of nanoscale circuits[J]. Solid-State Electronics, 2010, 54(1): 52-57. doi: 10.1016/j.sse.2009.09.027
    [21] 罗艳, 肖辅盛, 王庭刚, 等. 基于随机森林的电网实时运行风险评估方法[J]. 信息技术, 2020, 44(4): 23-26,31

    Luo Yan, Xiao Fusheng, Wang Tinggang, et al. Real-time risk assessment method for power grid operation based on random forest[J]. Information Technology, 2020, 44(4): 23-26,31
    [22] 周云浩, 杨宝杰, 刘丹, 等. 基于随机森林算法的电力工程数据预测分析建模与仿真[J]. 电子设计工程, 2024, 32(4): 103-106,111

    Zhou Yunhao, Yang Baojie, Liu Dan, et al. Modeling and simulation of power engineering data prediction and analysis based on Random Forest algorithm[J]. Electronic Design Engineering, 2024, 32(4): 103-106,111
    [23] Mantas C J, Castellano J G, Moral-García S, et al. A comparison of random forest based algorithms: random credal random forest versus oblique random forest[J]. Soft Computing, 2019, 23(21): 10739-10754. doi: 10.1007/s00500-018-3628-5
    [24] Chen Jinxiang, Zhao Feng, Sun Yanguang, et al. Improved XGBoost model based on genetic algorithm[J]. International Journal of Computer Applications in Technology, 2020, 62(3): 240-245. doi: 10.1504/IJCAT.2020.106571
    [25] Su Wei, Jiang Fan, Shi Chunyan, et al. An XGBoost-based knowledge tracing model[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 13. doi: 10.1007/s44196-023-00192-y
    [26] 刘琳, 李晓昂, 张锐, 等. 影响GIS支柱绝缘子闪络电压的沿面电场特征参数[J]. 高电压技术, 2019, 45(9): 2740-2747

    Liu Lin, Li Xiaoang, Zhang Rui, et al. Characteristic parameters of electric field along the surface affecting the flashover voltage of GIS pillar insulators[J]. High Voltage Engineering, 2019, 45(9): 2740-2747
    [27] Qiu Zhibin, Ruan Jiangjun, Lu Wei, et al. Feature extraction of electric field distribution and its application in discharge voltage prediction of large sphere-plane air gaps[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(3): 1030-1038. doi: 10.1109/TDEI.2018.006851
    [28] 樊嵘, 孟大志, 徐大舜. 统计相关性分析方法研究进展[J]. 数学建模及其应用, 2014, 3(1): 1-12

    Fan Rong, Meng Dazhi, Xu Dashun. Survey of research process on statistical correlation analysis[J]. Mathematical Modeling and its Applications, 2014, 3(1): 1-12
    [29] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090

    Cui Jiaxu, Yang Bo. Survey on bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-24
  • 修回日期:  2025-09-24
  • 录用日期:  2025-09-02
  • 网络出版日期:  2025-11-25

目录

    /

    返回文章
    返回