留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低磁场高效率同轴双模相对论切伦科夫振荡器

周文刚 邓如金 张鹏 李家文 张珂嘉

周文刚, 邓如金, 张鹏, 等. 低磁场高效率同轴双模相对论切伦科夫振荡器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250182
引用本文: 周文刚, 邓如金, 张鹏, 等. 低磁场高效率同轴双模相对论切伦科夫振荡器[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250182
Zhou Wengang, Deng Rujin, Zhang Peng, et al. Research on coaxial dual-mode relativistic Cherenkov oscillator with low magnetic field and high-efficiency[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250182
Citation: Zhou Wengang, Deng Rujin, Zhang Peng, et al. Research on coaxial dual-mode relativistic Cherenkov oscillator with low magnetic field and high-efficiency[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250182

低磁场高效率同轴双模相对论切伦科夫振荡器

doi: 10.11884/HPLPB202638.250182
详细信息
    作者简介:

    周文刚,147290403@qq.com

    通讯作者:

    邓如金,917319377@qq.com

    张 鹏,uestc_zp13@163.com

  • 中图分类号: TN752.5

Research on coaxial dual-mode relativistic Cherenkov oscillator with low magnetic field and high-efficiency

  • 摘要: 为了提高高功率微波源在低导引磁场下的效率,提出了一种低磁场高效率同轴双模相对论切伦科夫振荡器。该器件工作在同轴准TEM模式与同轴TM01模式下,利用双模工作机制,实现了低磁场下(<0.4 T)的高效率输出。在粒子模拟中,导引磁场0.35 T时,器件实现了功率3 GW的微波输出、束-波转换效率40%。同时,针对实验中遇到的射频击穿现象,通过增加慢波结构周期数量来提高功率容量,并通过仿真和实验进行验证。最终实验中在0.37 T磁场下,输出微波功率2.85 GW、脉宽57 ns,转换效率34%。在低磁场下获得的实验结果为高功率微波系统小型化的发展提供了强力支撑。
  • 图  1  低磁场高效率双模RCO结构示意图

    Figure  1.  Schematic of the high-efficiency dual-mode RCO under low magnetic field

    图  2  慢波结构色散曲线

    Figure  2.  Dispersion curve of slow wave structure

    图  3  RCO的2.5维仿真结果

    Figure  3.  2.5-D simulation results of RCO

    图  4  三维仿真中输出微波功率

    Figure  4.  Output Power in 3D Simulation

    图  5  三维仿真中输出波导Ez分布

    Figure  5.  Ez distribution of output waveguide in 3D simulation

    图  6  实验系统示意图

    Figure  6.  Schematic of the experimental system

    图  7  初步实验结果

    Figure  7.  Preliminary experimental results

    图  8  实验后RCO内部的实物照片

    Figure  8.  Photo of the RCO after the experiment

    图  9  RCO的射频场强分布

    Figure  9.  RF field distribution of RCO

    图  10  10周期SWS的低磁场高效率双模RCO结构示意图

    Figure  10.  Schematic of the high-efficiency dual-mode RCO under low magnetic field with 10-period SWS

    图  11  改进后RCO的2.5维仿真结果

    Figure  11.  2.5-D simulation results of improved RCO

    图  12  改进实验结果

    Figure  12.  Improved experimental results

  • [1] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cherenkov generators[J]. IEEE Transactions on Plasma Science, 1990, 18(3): 525-536. doi: 10.1109/27.55924
    [2] Li Xiaoze, Song Wei, Tan Weibing, et al. Experimental study of a Ku-band RBWO packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4408-4412. doi: 10.1109/TED.2019.2936835
    [3] Zhang Jun, Zhong Huihuang, Luo Ling. A novel overmoded slow-wave high-power microwave (HPM) Generator[J]. IEEE Transactions on Plasma Science, 2004, 32(6): 2236-2242. doi: 10.1109/TPS.2004.835970
    [4] Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-Bands[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [5] 史彦超, 滕雁, 陈昌华, 等. 一种X波段过模高效率相对论返波管[J]. 强激光与粒子束, 2018, 30: 073002

    Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002
    [6] 江佩洁, 李正红, 吴洋. 低磁场S波段相对论返波振荡器的工作特性[J]. 强激光与粒子束, 2019, 31: 033001

    Jiang Peijie, Li Zhenghong, Wu Yang. Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 033001
    [7] 邵剑波, 马乔生, 谢鸿全, 等. X波段低磁场相对论返波管振荡器实验研究[J]. 微波学报, 2015, 31(3): 62-65,69

    Shao Jianbo, Ma Qiaosheng, Xie Hongquan, et al. Experimental study on X-band relativistic backward wave oscillator with low magnetic field[J]. Journal of Microwaves, 2015, 31(3): 62-65,69
    [8] Li Xiaoze, Song Wei, Tan Weibing, et al. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2016, 23: 073101. doi: 10.1063/1.4954903
    [9] Wang Huida, Xiao Renzhen, Chen Changhua, et al. Experimental investigation of a super klystron-like relativistic backward wave oscillator operating with low magnetic field[J]. IEEE Transactions on Electron Devices, 2021, 68(6): 3045-3050. doi: 10.1109/TED.2021.3075419
    [10] 曹亦兵, 孙钧, 宋志敏, 等. C波段长脉冲相对论返波管设计与实验[J]. 强激光与粒子束, 2018, 30: 053004

    Cao Yibing, Sun Jun, Song Zhimin, et al. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 053004
    [11] Xiao Renzhen, Li Jiawei, Bai Xianchen, et al. An overmoded relativistic backward wave oscillator with efficient dual-mode operation[J]. Applied Physics Letters, 2014, 104: 093505. doi: 10.1063/1.4867531
    [12] Xiao Renzhen, Shi Yanchao, Wang Huida, et al. Efficient generation of multi-gigawatt power by an X-band dual-mode relativistic backward wave oscillator operating at low magnetic field[J]. Physics of Plasmas, 2020, 27: 043102. doi: 10.1063/5.0002361
    [13] Miao Tianze, Xiao Renzhen, Shi Yanchao, et al. Efficiency improvement by a beam filtering ring in a relativistic backward wave oscillator at low magnetic field[J]. Physics of Plasmas, 2022, 29: 043302. doi: 10.1063/5.0082447
    [14] Chen Kun, Xiao Renzhen, Shi Yanchao, et al. Effect of microwave leakage on backward current in an X-band dual-mode RBWO packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2022, 69(8): 4592-4597. doi: 10.1109/TED.2022.3184624
    [15] Rostov V V, Gunin A V, Tsygankov R V, et al. Two-wave Cherenkov oscillator with moderately oversized slow-wave structure[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 33-42. doi: 10.1109/TPS.2017.2773661
    [16] Deng Rujin, Ge Xingjun, Dang Fangchao, et al. Efficient beam–wave conversion in an X-band coaxial dual-mode relativistic Cherenkov oscillator under low magnetic field[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(9): 6275-6286. doi: 10.1109/TMTT.2025.3553398
    [17] Zhang Peng, Ge Xingjun, Dang Fangchao, et al. Research on sub-microsecond compact L-band relativistic Cherenkov oscillator[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6352-6357. doi: 10.1109/TED.2022.3209133
    [18] Teng Yan, Chen Changhua, Shao H, et al. Design and efficient operation of a coaxial RBWO[J]. Laser and Particle Beams, 2013, 31(2): 321-331. doi: 10.1017/S0263034612001061
    [19] Yang Chaochao, Meng Jin, Wang Haitao, et al. Experimental investigation of a Ku-band coaxial transit time oscillator on low magnetic field operation[J]. IEEE Transactions on Electron Devices, 2024, 71(4): 2656-2661. doi: 10.1109/TED.2024.3365782
    [20] Ling Junpu, He Juntao, Zhang Jiande, et al. Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field[J]. Physics of Plasmas, 2014, 21: 093107. doi: 10.1063/1.4895797
  • 加载中
图(12)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-24
  • 修回日期:  2025-10-02
  • 录用日期:  2025-07-29
  • 网络出版日期:  2025-11-21

目录

    /

    返回文章
    返回