留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轨迹规划的输出开关间隙气动调节方法

贾真 吴刚 王海洋 尹佳辉 郭帆 程乐 梅锴盛

贾真, 吴刚, 王海洋, 等. 基于轨迹规划的输出开关间隙气动调节方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250184
引用本文: 贾真, 吴刚, 王海洋, 等. 基于轨迹规划的输出开关间隙气动调节方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250184
Jia Zhen, Wu Gang, Wang Haiyang, et al. A pneumatic adjustment method for output switch gap based on trajectory planning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250184
Citation: Jia Zhen, Wu Gang, Wang Haiyang, et al. A pneumatic adjustment method for output switch gap based on trajectory planning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250184

基于轨迹规划的输出开关间隙气动调节方法

doi: 10.11884/HPLPB202638.250184
详细信息
    作者简介:

    贾 真,jiazhen@nudt.edu.cn

  • 中图分类号: TM832.1

A pneumatic adjustment method for output switch gap based on trajectory planning

  • 摘要: 双极性电磁脉冲发生器无法通过外置机械调节结构的方式对输出开关间隙进行调节。为解决其开关间隙调节难题,以绝缘气体为介质,气缸为执行器,间隙轨迹规划方法和单环PIDA控制器相结合为控制算法,提出了一种开关电极间隙气动调节方法,该气动调节方法可以更好地适应高压绝缘环境要求,替代人工调节和电动方式,实现开关间隙的实时精确控制。经仿真验证,在间隙传感器测量精度0.1 mm的精度下,开关间隙的调节误差小于0.5 mm,这对双极性等电磁脉冲模拟装置的工程化实现具有重要意义。
  • 图  1  输出开关间隙控制系统示意图

    Figure  1.  Schematic diagram of output switch gap control system

    图  2  开关电极间隙双环控制系统框图

    Figure  2.  Block diagram of dual-loop control system for switch electrode gap

    图  3  单间隙闭环控制系统框图

    Figure  3.  Block diagram of single gap closed-loop control system

    图  4  “S”型间隙规划的位移、速度及加速度曲线

    Figure  4.  ‘S’shaped gap variation curve

    图  5  控制气缸结构示意图

    Figure  5.  Schematic diagram of control cylinder structure

    图  6  间隙跟踪曲线

    Figure  6.  Gap tracking curve

    图  7  电极速度跟踪曲线及气缸压力变化曲线

    Figure  7.  Velocity tracking curve and Cylinder pressure curve

    表  1  仿真参数

    Table  1.   Simulation parameters

    pressure of constant-pressure cavity/Pa pressure of the connected cavity/L cylinder length/mm
    $6 \times {10^5}$ 10 220
    cylinder radius/mm initial pressure of the cylinder/Pa mass of the electrode tip/kg
    50 $1 \times {10^5}$ 10
    cross-sectional area of the electrode/m2 initial pressure of the switch/bar initial volume of the switch/m3
    0.003 15 0.02
    radial frictional force/N simulation frequency/kHz gas type
    500 1 SF6
    下载: 导出CSV
  • [1] 张国伟, 陈维青, 王海洋, 等. 一种兆伏级有界波电磁脉冲模拟器峰化单元设计与等效实验[J]. 现代应用物理, 2015, 6(4): 264-268

    Zhang Guowei, Chen Weiqing, Wang Haiyang, et al. Design and experimental study on peaking unit of a MV-level bounded-wave electromagnetic pulse simulator[J]. Modern Applied Physics, 2015, 6(4): 264-268
    [2] Jia Wei, Mei Kaisheng, Cheng Le, et al. Development and research of a medium vertical dipole electromagnetic pulse simulator[J]. Energies, 2023, 16: 4449. doi: 10.3390/en16114449
    [3] 尹佳辉, 孙凤举, 邱爱慈, 等. MV级气体开关脉冲自击穿特性及支撑结构的优化[J]. 强激光与粒子束, 2008, 20(7): 1220-1224

    Yin Jiahui, Sun Fengju, Qiu Aici, et al. Self-breakdown properties and optimization of insulator envelope for MV gas switch under pulsed voltage[J]. High Power Laser and Particle Beams, 2008, 20(7): 1220-1224
    [4] 郭帆, 贾伟, 谢霖燊, 等. 百kV/cm场强下SF6气体开关纳秒脉冲击穿场强和时延经验公式[J]. 强激光与粒子束, 2022, 34: 075004

    Guo Fan, Jia Wei, Xie Linshen, et al. Empirical formula of breakdown electric field and time delay for SF6 gas switch under nanosecond pulse and hundreds of kV/cm electric field[J]. High Power Laser and Particle Beams, 2022, 34: 075004
    [5] 邓永超. 脉冲输出开关击穿特性的关键影响因素研究[D]. 长沙: 湖南大学, 2022: 13-18

    Deng Yongchao. Research on key factors affecting breakdown characteristics of pulse output switch[D]. Changsha: Hunan University, 2022: 13-18
    [6] 孙凤荣, 谢霖燊, 张国伟, 等. 一种间隙精确可调的高压气体开关: 201420371819.4[P]. 2015-01-07

    Sun Fengrong, Xie Linshen, Zhang Guowei, et al. High-pressure gas switch with accurately adjustable gap: 201420371819.4[P]. 2015-01-07
    [7] 贾伟, 陈志强, 吴伟, 等. 3.8MV快前沿电磁脉冲模拟器脉冲驱动源研制[J]. 现代应用物理, 2024, 15: 010501

    Jia Wei, Chen Zhiqiang, Wu Wei, et al. A 3.8 MV fast risetime pulse driver for EMP simulation[J]. Modern Applied Physics, 2024, 15: 010501
    [8] Xi Xiaowen, Chai Changchun, Zhao Gang, et al. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse[J]. Chinese Physics B, 2016, 25: 048503. doi: 10.1088/1674-1056/25/4/048503
    [9] 王立蒙. 电磁脉冲弹对典型电子器件的毁伤机理[D]. 太原: 中北大学, 2016: 23-27

    Wang Limeng. Damage mechanism of electromagnetic pulse bomb on typical electronic devices[D]. Taiyuan: North University of China, 2016: 23-27
    [10] 张茂磊. 电磁脉冲对屏蔽机箱孔缝耦合及毁伤效应研究[D]. 南京: 南京理工大学, 2009: 21-33

    Zhang Maolei. Research on the coupling and damage effects of electromagnetic pulse on shielded chassis holes and seams[D]. Nanjing: Nanjing University of Science and Technology, 2009: 21-33
    [11] 吴刚, 贾伟, 王海洋, 等. 高空核电磁脉冲模拟器研制进展[J]. 中国科学: 物理学 力学 天文学, 2023, 53: 272009

    Wu Gang, Jia Wei, Wang Haiyang, et al. Progress in developing high-altitude electromagnetic pulse simulators[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53: 272009
    [12] 肖晶, 吴刚, 王海洋, 等. 两种不同线栅结构的水平极化辐射波模拟器[J]. 强激光与粒子束, 2021, 33: 033004

    Xiao Jing, Wu Gang, Wang Haiyang, et al. Horizontally polarized radiation-wave simulator with two different wire grating structures[J]. High Power Laser and Particle Beams, 2021, 33: 033004
    [13] 贾伟, 陈志强, 郭帆, 等. 小型垂直极化辐射波强电磁脉冲模拟器研制[J]. 现代应用物理, 2023, 14: 020502

    Jia Wei, Chen Zhiqiang, Guo Fan, et al. Research and development of a small-scale vertical dipole EMP simulator[J]. Modern Applied Physics, 2023, 14: 020502
    [14] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV Pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245
    [15] Yin Jiahui, Sun Fengju, Qiu Aici, et al. 2.8-MV low-inductance low-jitter electrical-triggered gas switch[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2045-2052. doi: 10.1109/TPS.2016.2600479
    [16] 罗城, 丛培天, 张天洋, 等. 气体火花开关电极烧蚀研究综述[J]. 强激光与粒子束, 2020, 32: 105001

    Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 修回日期:  2025-09-22
  • 录用日期:  2025-08-28
  • 网络出版日期:  2025-11-25

目录

    /

    返回文章
    返回