留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载合成孔径雷达单频连续波干扰规律及机理

沈衍 陈亚洲 王玉明 马立云 王耀北

沈衍, 陈亚洲, 王玉明, 等. 机载合成孔径雷达单频连续波干扰规律及机理[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250187
引用本文: 沈衍, 陈亚洲, 王玉明, 等. 机载合成孔径雷达单频连续波干扰规律及机理[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250187
Shen Yan, Chen Yazhou, Wang Yuming, et al. Interference law and mechanism of single frequency continuous wave in airborne synthetic aperture radar[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250187
Citation: Shen Yan, Chen Yazhou, Wang Yuming, et al. Interference law and mechanism of single frequency continuous wave in airborne synthetic aperture radar[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250187

机载合成孔径雷达单频连续波干扰规律及机理

doi: 10.11884/HPLPB202638.250187
基金项目: 电磁环境效应国家级重点实验室基金项目(6142205210301)
详细信息
    作者简介:

    沈 衍,lgd_sy@163.com

    通讯作者:

    陈亚洲,chen_yazhou@sina.com

  • 中图分类号: TN972+.1

Interference law and mechanism of single frequency continuous wave in airborne synthetic aperture radar

  • 摘要: 针对SAR系统的前门耦合电磁敏感特性,通过等效注入试验方法,系统研究了单频连续波对机载SAR成像的影响规律及作用机理,并采用融合皮尔逊相关系数、结构相似度和峰值信噪比的SAR图像质量评价因子作为干扰效果评估指标。研究结果表明:当干扰频率落入接收机硬件通带(8.5~9.5 GHz)范围内,且干信比≥15 dB时干扰效应显著;干扰信号在射频前端虽未诱发显著非线性效应,但会导致模数转换(ADC)采样芯片中的内部金属氧化物半导体场效应晶体管(MOSFET)产生非线性响应,其产生的额外直流分量和谐波成分是造成SAR图像中出现特征性干扰条纹及质量下降的根本物理成因。
  • 图  1  机载SAR成像典型场景图

    Figure  1.  Typical scenes of airborne SAR imaging

    图  2  干信比与干扰机发射功率的关系

    Figure  2.  The relationship between ${J_s}$ and the transmission power of the jammer

    图  3  SAR接收机内部框图

    Figure  3.  Block diagram of SAR receiver

    图  4  注入式干扰试验配置图

    Figure  4.  Diagram of injection interference experiment configuration

    图  5  系统成像结果与成像场景模板对比

    Figure  5.  Diagram of injection interference experiment configuration

    图  6  干信比为0 dB到25 dB时的9 GHz单频连续波干扰试验结果

    Figure  6.  Experimental results of 9 GHz continuous wave at ${J_s}$ of 0 dB to 25 dB

    图  7  不同SAR图像评价指标与干信比的关系

    Figure  7.  The relationship between different SAR image evaluation indicators and ${J_s}$

    图  8  不同干信比对应的SAR图像质量评价因子随干扰信号频率的变化

    Figure  8.  The variation of SAR image quality evaluation factors corresponding to different ${J_s}$ with the frequency of interference signals

    图  9  监测口2和监测口3输出信号频谱示意图

    Figure  9.  Schematic diagram of the frequency spectrum of the output signals from monitoring port 2 and monitoring port 3

    图  10  监测口2输出信号功率与干信比之间的关系

    Figure  10.  The relationship between the output signal power of monitoring port 2 and ${J_s}$

    图  11  监测口3输出中频信号功率与干信比之间的关系

    Figure  11.  The relationship between the output intermediate frequency signal power of monitoring port 3 and the ${J_s}$

    图  12  回波基带信号频谱

    Figure  12.  Spectrum of echo baseband signal spectrum

    图  13  不同干信比下9 GHz单频连续波干扰下的回波基带信号频谱

    Figure  13.  Spectrum of echo baseband signal under 9 GHz single frequency continuous wave interference at different ${J_s}$

    图  14  干扰信号和回波信号基带信号频谱幅度随干信比的变化关系

    Figure  14.  The relationship between the frequency spectrum amplitude of interference signal and echo signal baseband signal and the variation of ${J_s}$

    图  15  干信比为15 dB时对应不同干扰中心频率下的基带信号频谱

    Figure  15.  The baseband signal spectrum corresponding to different interference center frequencies when the ${J_s}$ is 15 dB

    表  1  干扰场景参数

    Table  1.   Parameters of jamming scenarios

    Radar transmission power/kW Point target radar cross section SAR antenna gain/dB Radar signal wavelength/m Distance between point target and radar/km
    2 100 30 0.033 2
    Jammer transmission power/kW Jammer antenna gain/dB Gain of SAR antenna obtained from interference signal/dB Interference signal wavelength/m Distance from jammer to SAR receiver/km
    2 20 10 0.033 3
    下载: 导出CSV
  • [1] Lv Jiming, Zhu Daiyin, Geng Zhe, et al. Recognition for SAR deformation military target from a new MiniSAR dataset using multi-view joint transformer approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 210: 180-197. doi: 10.1016/j.isprsjprs.2024.03.009
    [2] Ding Chang, Mu Huilin, Zhang Yun. A multicomponent linear frequency modulation signal-separation network for multi-moving-target imaging in the SAR-ground-moving-target indication system[J]. Remote Sensing, 2024, 16: 605. doi: 10.3390/rs16040605
    [3] Miller C E, Griffith P C, Hoy E, et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys[J]. Earth System Science Data, 2024, 16(6): 2605-2624. doi: 10.5194/essd-16-2605-2024
    [4] Tang Hongdou, Gao Song, Li Song, et al. A lightweight SAR image ship detection method based on improved convolution and YOLOv7[J]. Remote Sensing, 2024, 16: 486. doi: 10.3390/rs16030486
    [5] Zhu Shiliang, Miao Min. Lightweight high-precision SAR ship detection method based on YOLOv7-LDS[J]. PLoS One, 2024, 19: e0296992. doi: 10.1371/journal.pone.0296992
    [6] Huang Yan, Zhang Lei, Yang Xi, et al. An efficient graph-based algorithm for time-varying narrowband interference suppression on SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8418-8432. doi: 10.1109/TGRS.2021.3051192
    [7] Huang Yan, Wen Cai, Chen Zhanye, et al. HRWS SAR narrowband interference mitigation using low-rank recovery and image-domain sparse regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 521791.
    [8] Lyu Qiyuan, Han Bing, Li Guangzuo, et al. SAR interference suppression algorithm based on low-rank and sparse matrix decomposition in time–frequency domain[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4008305.
    [9] Yan Huizhang, Tao Mingliang, Chen Shengyao, et al. On the mutual interference between spaceborne SARs: modeling, characterization, and mitigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8470-8485. doi: 10.1109/TGRS.2020.3036635
    [10] Tao Mingliang, Li Jieshuang, Fan Yifei, et al. Effects of interference on synthetic aperture radar measurements: an illustrative example[C]//Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. 2020: 1-4.
    [11] Natsuaki R, Jäger M, Prats-Iraola. Approach for radio frequency interference detection and correction in multi-receiver SAR[C]//Proceedings of the IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 2020: 3770-3773.
    [12] Sedehi M, Cristallini D, Marini J, et al. Impact of an electromagnetic interference on imaging capability of a synthetic aperture radar[C]//Proceedings of the 2007 IEEE Aerospace Conference. 2007: 1-8.
    [13] DeBoer D R, Cruz-Pol S L, Davis M M, et al. Radio frequencies: policy and management[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4918-4927. doi: 10.1109/TGRS.2013.2253471
    [14] Ding Yi, Du Jinbiao, Zhang Zhaodong, et al. Radio frequency interference mitigation method for synthetic aperture radar using joint low rank and sparsity property[C]//Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). 2021: 1-4.
    [15] 徐声海, 周传晟, 许炎义. 对SAR噪声压制干扰仿真与干扰效果评估[J]. 舰船电子对抗, 2012, 35(1): 90-92,120

    Xu Shenghai, Zhou Chuansheng, Xu Yanyi, et al. Simulation of noise blanket jamming on SAR and jamming effect evaluation[J]. Shipboard Electronic Countermeasure, 2012, 35(1): 90-92,120
    [16] Jiang Jiawei, Wu Yanhong, Wang Hongyan. Analysis of active noise jamming against synthetic aperture radar ground moving target indication[C]//Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP). 2015: 1530-1535.
    [17] Wang Ying, Liu Guikun, Ma Xile, et al. A convolution modulation jamming method based on the optimal combination of noise templates[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4008905.
    [18] 刘佳伟, 达通航, 王松, 等. 合成孔径雷达窄带瞄频噪声干扰方法[J]. 舰船电子对抗, 2020, 43(3): 26-29

    Liu Jiawei, Da Tonghang, Wang Song, et al. Narrow-band frequency spot noise jamming method for synthetic aperture radar[J]. Shipboard Electronic Countermeasure, 2020, 43(3): 26-29
    [19] 汪俊澎, 邢世其, 李永祯, 等. 对调频连续波SAR部分接收式噪声调制干扰[J]. 信号处理, 2022, 38(8): 1667-1674

    Wang Junpeng, Xing Shiqi, Li Yongzhen, et al. Partial receiving noise modulation jamming against FMCW SAR[J]. Journal of Signal Processing, 2022, 38(8): 1667-1674
    [20] Zhang Jingke, Qi Zongfeng, Zeng Yonghu, et al. Deceptive jamming against multi-channel SAR-GMTI[J]. The Journal of Engineering, 2019, 2019(20): 7105-7109. doi: 10.1049/joe.2019.0504
    [21] Sun Qingyang, Shu Ting, Tang Mang, et al. Effective moving target deception jamming against multichannel SAR-GMTI based on multiple jammers[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 441-445. doi: 10.1109/LGRS.2019.2921678
    [22] Tang Zhouyang, Yu Chunrui, Deng Yunkai, et al. Evaluation of deceptive jamming effect on SAR based on visual consistency[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12246-12262. doi: 10.1109/JSTARS.2021.3129494
    [23] Zhang Fan, Meng Tianying, Xiang Deliang, et al. Adversarial deception against SAR target recognition network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4507-4520. doi: 10.1109/JSTARS.2022.3179171
    [24] Cheng Dongyang, Liu Zhenchang, Guo Zhengwei, et al. A repeater-type SAR deceptive jamming method based on joint encoding of amplitude and phase in the intra-pulse and inter-pulse[J]. Remote Sensing, 2022, 14: 4597. doi: 10.3390/rs14184597
    [25] Lang Shinan, Li Guiqiang, Liu Yi, et al. A GAN-based augmentation scheme for SAR deceptive jamming templates with shadows[J]. Remote Sensing, 2023, 15: 4756. doi: 10.3390/rs15194756
    [26] Mosavi M R, Moghaddasi M S, Rezaei M J. A new method for continuous wave interference mitigation in single-frequency GPS receivers[J]. Wireless Personal Communications, 2016, 90(3): 1563-1578. doi: 10.1007/s11277-016-3410-x
    [27] Rewienski J, Groth M, Kulas L, et al. Investigation of continuous wave jamming in an IEEE 802.15. 4 network[C]//Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON). 2018: 242-246.
    [28] Liu Zhidong, Zhang Qun, Li Guangming, et al. Improved blanket jamming against ISAR based on nonperiodic interrupted sampling modulation[J]. IEEE Sensors Journal, 2021, 21(1): 430-437.
    [29] Du Xue, Wei Guanghui, Zhao Hongze, et al. Research on continuous wave electromagnetic effect in swept frequency radar[J]. Mathematical Problems in Engineering, 2021, 2021: 4862451.
    [30] Elghamrawy H, Karaim M, Korenberg M, et al. High-resolution spectral estimation for continuous wave jamming mitigation of GNSS signals in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7881-7895. doi: 10.1109/TITS.2021.3074102
    [31] Dhulashia D, Temiz M, Ritchie M A. Jamming effects on hybrid multistatic radar network range and velocity estimation errors[J]. IEEE Access, 2022, 10: 27736-27749. doi: 10.1109/ACCESS.2022.3157607
    [32] 许彤, 陈亚洲, 王玉明, 等. 无人机数据链带内连续波电磁干扰效应研究[J]. 北京理工大学学报, 2021, 41(10): 1084-1094

    Xu Tong, Chen Yazhou, Wang Yuming, et al. Research on in-band continuous wave electromagnetic interference effect of unmanned aerial vehicle data link[J]. Transactions of Beijing Institute of Technology, 2021, 41(10): 1084-1094
    [33] Benesty J, Chen Jingdong, Huang Yiteng. On the importance of the Pearson correlation coefficient in noise reduction[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(4): 757-765. doi: 10.1109/TASL.2008.919072
    [34] Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. doi: 10.4236/jcc.2019.73002
    [35] 梁臻鹤, 周长林, 余道杰, 等. 嵌入式ADC电磁敏感度的温度效应分析与实验[J]. 强激光与粒子束, 2017, 29: 053002

    Liang Zhenhe, Zhou Changlin, Yu Daojie, et al. Analysis and measurement of temperature effect on electromagnetic susceptibility of embedded ADC[J]. High Power Laser and Particle Beams, 2017, 29: 053002
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-27
  • 修回日期:  2025-09-24
  • 录用日期:  2025-07-29
  • 网络出版日期:  2025-11-25

目录

    /

    返回文章
    返回