Interference law and mechanism of single frequency continuous wave in airborne synthetic aperture radar
-
摘要: 针对SAR系统的前门耦合电磁敏感特性,通过等效注入试验方法,系统研究了单频连续波对机载SAR成像的影响规律及作用机理,并采用融合皮尔逊相关系数、结构相似度和峰值信噪比的SAR图像质量评价因子作为干扰效果评估指标。研究结果表明:当干扰频率落入接收机硬件通带(8.5~9.5 GHz)范围内,且干信比≥15 dB时干扰效应显著;干扰信号在射频前端虽未诱发显著非线性效应,但会导致模数转换(ADC)采样芯片中的内部金属氧化物半导体场效应晶体管(MOSFET)产生非线性响应,其产生的额外直流分量和谐波成分是造成SAR图像中出现特征性干扰条纹及质量下降的根本物理成因。Abstract: Airborne Synthetic Aperture Radar (SAR) is vulnerable to continuous wave (CW) interference in complex electromagnetic environments, leading to significant degradation in imaging quality. Its susceptibility to front-door coupling electromagnetic effects is a critical concern. This study aims to systematically investigate the impact patterns and physical mechanisms of single-frequency CW interference on airborne SAR imaging through equivalent injection experiments. It further seeks to establish a robust evaluation method for interference effects. Equivalent injection testing was employed to simulate CW interference susceptibility. The interference effect was evaluated using a composite SAR image quality factor integrating the Pearson Correlation Coefficient (PCC), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). Detailed analysis of the radio frequency (RF) front-end response and Analog-to-Digital Converter (ADC) behavior under interference was conducted. Significant interference effects were observed when the interfering frequency fell within the receiver's hardware passband (8.5-9.5 GHz) and the Jammer-to-Signal Ratio reached 15 dB. While the RF front-end exhibited no significant nonlinearity, the interference induced a nonlinear response specifically within the internal Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) of the ADC sampling chip. This nonlinearity generated additional DC components and harmonics, identified as the fundamental physical cause of characteristic interference stripes and overall SAR image quality degradation. The generation of DC offsets and harmonic distortion within the ADC's MOSFET circuitry is the root physical mechanism behind SAR image degradation under CW interference within the specified band and JSR threshold. This research provides a solid theoretical foundation for designing electromagnetic interference (EMI) countermeasures in airborne SAR systems, thereby enhancing their robustness and imaging capability in challenging complex electromagnetic environments.
-
表 1 干扰场景参数
Table 1. Parameters of jamming scenarios
Radar transmission power/kW Point target radar cross section SAR antenna gain/dB Radar signal wavelength/m Distance between point target and radar/km 2 100 30 0.033 2 Jammer transmission power/kW Jammer antenna gain/dB Gain of SAR antenna obtained from interference signal/dB Interference signal wavelength/m Distance from jammer to SAR receiver/km 2 20 10 0.033 3 -
[1] Lv Jiming, Zhu Daiyin, Geng Zhe, et al. Recognition for SAR deformation military target from a new MiniSAR dataset using multi-view joint transformer approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 210: 180-197. doi: 10.1016/j.isprsjprs.2024.03.009 [2] Ding Chang, Mu Huilin, Zhang Yun. A multicomponent linear frequency modulation signal-separation network for multi-moving-target imaging in the SAR-ground-moving-target indication system[J]. Remote Sensing, 2024, 16: 605. doi: 10.3390/rs16040605 [3] Miller C E, Griffith P C, Hoy E, et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys[J]. Earth System Science Data, 2024, 16(6): 2605-2624. doi: 10.5194/essd-16-2605-2024 [4] Tang Hongdou, Gao Song, Li Song, et al. A lightweight SAR image ship detection method based on improved convolution and YOLOv7[J]. Remote Sensing, 2024, 16: 486. doi: 10.3390/rs16030486 [5] Zhu Shiliang, Miao Min. Lightweight high-precision SAR ship detection method based on YOLOv7-LDS[J]. PLoS One, 2024, 19: e0296992. doi: 10.1371/journal.pone.0296992 [6] Huang Yan, Zhang Lei, Yang Xi, et al. An efficient graph-based algorithm for time-varying narrowband interference suppression on SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8418-8432. doi: 10.1109/TGRS.2021.3051192 [7] Huang Yan, Wen Cai, Chen Zhanye, et al. HRWS SAR narrowband interference mitigation using low-rank recovery and image-domain sparse regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 521791. [8] Lyu Qiyuan, Han Bing, Li Guangzuo, et al. SAR interference suppression algorithm based on low-rank and sparse matrix decomposition in time–frequency domain[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4008305. [9] Yan Huizhang, Tao Mingliang, Chen Shengyao, et al. On the mutual interference between spaceborne SARs: modeling, characterization, and mitigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8470-8485. doi: 10.1109/TGRS.2020.3036635 [10] Tao Mingliang, Li Jieshuang, Fan Yifei, et al. Effects of interference on synthetic aperture radar measurements: an illustrative example[C]//Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. 2020: 1-4. [11] Natsuaki R, Jäger M, Prats-Iraola. Approach for radio frequency interference detection and correction in multi-receiver SAR[C]//Proceedings of the IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 2020: 3770-3773. [12] Sedehi M, Cristallini D, Marini J, et al. Impact of an electromagnetic interference on imaging capability of a synthetic aperture radar[C]//Proceedings of the 2007 IEEE Aerospace Conference. 2007: 1-8. [13] DeBoer D R, Cruz-Pol S L, Davis M M, et al. Radio frequencies: policy and management[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4918-4927. doi: 10.1109/TGRS.2013.2253471 [14] Ding Yi, Du Jinbiao, Zhang Zhaodong, et al. Radio frequency interference mitigation method for synthetic aperture radar using joint low rank and sparsity property[C]//Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). 2021: 1-4. [15] 徐声海, 周传晟, 许炎义. 对SAR噪声压制干扰仿真与干扰效果评估[J]. 舰船电子对抗, 2012, 35(1): 90-92,120Xu Shenghai, Zhou Chuansheng, Xu Yanyi, et al. Simulation of noise blanket jamming on SAR and jamming effect evaluation[J]. Shipboard Electronic Countermeasure, 2012, 35(1): 90-92,120 [16] Jiang Jiawei, Wu Yanhong, Wang Hongyan. Analysis of active noise jamming against synthetic aperture radar ground moving target indication[C]//Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP). 2015: 1530-1535. [17] Wang Ying, Liu Guikun, Ma Xile, et al. A convolution modulation jamming method based on the optimal combination of noise templates[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4008905. [18] 刘佳伟, 达通航, 王松, 等. 合成孔径雷达窄带瞄频噪声干扰方法[J]. 舰船电子对抗, 2020, 43(3): 26-29Liu Jiawei, Da Tonghang, Wang Song, et al. Narrow-band frequency spot noise jamming method for synthetic aperture radar[J]. Shipboard Electronic Countermeasure, 2020, 43(3): 26-29 [19] 汪俊澎, 邢世其, 李永祯, 等. 对调频连续波SAR部分接收式噪声调制干扰[J]. 信号处理, 2022, 38(8): 1667-1674Wang Junpeng, Xing Shiqi, Li Yongzhen, et al. Partial receiving noise modulation jamming against FMCW SAR[J]. Journal of Signal Processing, 2022, 38(8): 1667-1674 [20] Zhang Jingke, Qi Zongfeng, Zeng Yonghu, et al. Deceptive jamming against multi-channel SAR-GMTI[J]. The Journal of Engineering, 2019, 2019(20): 7105-7109. doi: 10.1049/joe.2019.0504 [21] Sun Qingyang, Shu Ting, Tang Mang, et al. Effective moving target deception jamming against multichannel SAR-GMTI based on multiple jammers[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 441-445. doi: 10.1109/LGRS.2019.2921678 [22] Tang Zhouyang, Yu Chunrui, Deng Yunkai, et al. Evaluation of deceptive jamming effect on SAR based on visual consistency[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12246-12262. doi: 10.1109/JSTARS.2021.3129494 [23] Zhang Fan, Meng Tianying, Xiang Deliang, et al. Adversarial deception against SAR target recognition network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4507-4520. doi: 10.1109/JSTARS.2022.3179171 [24] Cheng Dongyang, Liu Zhenchang, Guo Zhengwei, et al. A repeater-type SAR deceptive jamming method based on joint encoding of amplitude and phase in the intra-pulse and inter-pulse[J]. Remote Sensing, 2022, 14: 4597. doi: 10.3390/rs14184597 [25] Lang Shinan, Li Guiqiang, Liu Yi, et al. A GAN-based augmentation scheme for SAR deceptive jamming templates with shadows[J]. Remote Sensing, 2023, 15: 4756. doi: 10.3390/rs15194756 [26] Mosavi M R, Moghaddasi M S, Rezaei M J. A new method for continuous wave interference mitigation in single-frequency GPS receivers[J]. Wireless Personal Communications, 2016, 90(3): 1563-1578. doi: 10.1007/s11277-016-3410-x [27] Rewienski J, Groth M, Kulas L, et al. Investigation of continuous wave jamming in an IEEE 802.15. 4 network[C]//Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON). 2018: 242-246. [28] Liu Zhidong, Zhang Qun, Li Guangming, et al. Improved blanket jamming against ISAR based on nonperiodic interrupted sampling modulation[J]. IEEE Sensors Journal, 2021, 21(1): 430-437. [29] Du Xue, Wei Guanghui, Zhao Hongze, et al. Research on continuous wave electromagnetic effect in swept frequency radar[J]. Mathematical Problems in Engineering, 2021, 2021: 4862451. [30] Elghamrawy H, Karaim M, Korenberg M, et al. High-resolution spectral estimation for continuous wave jamming mitigation of GNSS signals in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7881-7895. doi: 10.1109/TITS.2021.3074102 [31] Dhulashia D, Temiz M, Ritchie M A. Jamming effects on hybrid multistatic radar network range and velocity estimation errors[J]. IEEE Access, 2022, 10: 27736-27749. doi: 10.1109/ACCESS.2022.3157607 [32] 许彤, 陈亚洲, 王玉明, 等. 无人机数据链带内连续波电磁干扰效应研究[J]. 北京理工大学学报, 2021, 41(10): 1084-1094Xu Tong, Chen Yazhou, Wang Yuming, et al. Research on in-band continuous wave electromagnetic interference effect of unmanned aerial vehicle data link[J]. Transactions of Beijing Institute of Technology, 2021, 41(10): 1084-1094 [33] Benesty J, Chen Jingdong, Huang Yiteng. On the importance of the Pearson correlation coefficient in noise reduction[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(4): 757-765. doi: 10.1109/TASL.2008.919072 [34] Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. doi: 10.4236/jcc.2019.73002 [35] 梁臻鹤, 周长林, 余道杰, 等. 嵌入式ADC电磁敏感度的温度效应分析与实验[J]. 强激光与粒子束, 2017, 29: 053002Liang Zhenhe, Zhou Changlin, Yu Daojie, et al. Analysis and measurement of temperature effect on electromagnetic susceptibility of embedded ADC[J]. High Power Laser and Particle Beams, 2017, 29: 053002 -
下载:








