留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MW级回旋行波管曲面阴极结构磁控注入电子枪研究

李金帅 包明明 徐勇 蔡茂 刘鲁伟 陈静 尹鹏程 蔡金赤 徐进 林显彩 岳玲娜 殷海荣 牛新建 刘迎辉 魏彦玉

李金帅, 包明明, 徐勇, 等. MW级回旋行波管曲面阴极结构磁控注入电子枪研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250209
引用本文: 李金帅, 包明明, 徐勇, 等. MW级回旋行波管曲面阴极结构磁控注入电子枪研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250209
Li Jinshuai, Bao Mingming, Xu Yong, et al. Research on Magnetron Injection Gun with Curved Cathode for Megawatt-class Gyrotron Traveling Wave Tube[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250209
Citation: Li Jinshuai, Bao Mingming, Xu Yong, et al. Research on Magnetron Injection Gun with Curved Cathode for Megawatt-class Gyrotron Traveling Wave Tube[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250209

MW级回旋行波管曲面阴极结构磁控注入电子枪研究

doi: 10.11884/HPLPB202638.250209
基金项目: 国家自然科学基金项目(62107108);中国电子科技集团公司第十二研究所项目(K2301287);空间微波技术国家级重点实验室开放基金项目(HTKJ2023KL504007)
详细信息
    作者简介:

    李金帅,13616351029@163.com

    通讯作者:

    徐 勇,xuyong01@uestc.edu.cn

  • 中图分类号: TN124

Research on Magnetron Injection Gun with Curved Cathode for Megawatt-class Gyrotron Traveling Wave Tube

  • 摘要: 为了满足研制兆瓦级大功率回旋行波管对高压、大电流、低电子注速度零散磁控注入电子枪的迫切需求,本文针对性地给出了一支新型磁控注入单阳极电子枪的设计方案。该新型电子枪方案引入曲面阴极结构,以降低电子枪的速度零散,同时有效增大阴极发射带面积,降低阴极发射密度,从根本上提高电子枪的工作稳定性与寿命。PIC仿真的结果表明:在115 kV、43 A的工作条件下,该电子枪的横纵速度比为1.05,速度零散为1.63%,引导中心半径为3.41 mm,满足应用需求。
  • 图  1  单阳极电子枪结构方案和枪区工作磁场分布

    Figure  1.  Single anode electron gun structure scheme and magnetic field distribution in the gun area

    图  2  优化后的电子枪阴阳极间电场以及曲面阴极结构

    Figure  2.  Optimized electric field between anode and cathode of electron gun and curved cathode structure

    图  3  优化前后电子注参数对比以及优化后枪口处电子注切面

    Figure  3.  Comparison of electronic beam parameters before and after optimization, and electronic beam cross-section at the muzzle after optimization

    图  4  工作参量偏差对电子注性能的影响

    Figure  4.  The influence of working parameter deviation on electron beam performance

    图  6  发射带前端以及发射带后端的开缝处理

    Figure  6.  Opening treatment of the front end and rear end of the emission belt

    图  5  电子枪阴极内部初始结构以及热量分布情况和热量流动情况

    Figure  5.  Initial structure inside the cathode of the electron gun, heat distribution, and heat flow

    图  7  电子枪优化后的阴极内部结构以及热量分布情况和热量流动情况

    Figure  7.  Optimized structure inside the cathode of the electron gun, heat distribution, and heat flow

    图  8  电子枪阴极热形变对电子注性能的影响

    Figure  8.  The effect of cathode thermal deformation of electron gun on electron beam performance

    图  9  装配时可能出现的阴极倾斜误差和轴向偏移误差

    Figure  9.  Potential cathode tilt error and axial offset error during assembly

    图  10  装配误差产生后的电子注性能

    Figure  10.  Electron beam performance after assembly error

    图  11  高压大电流低速度零散磁控注入电子枪阴极实物加工图和红外测温仪图片

    Figure  11.  Physical processing diagram of high voltage, high current, low velocity spread magnetron injection electron gun cathode and infrared thermometer

    表  1  高压大电流低速度零散电子枪设计输入参数

    Table  1.   Design input parameters of high voltage, high current, low velocity spread electron gun

    Va/kVI0/AB0/TαΔβrg0/mmP/WEc/V/mJc/(A·cm−2)
    115431.091.05<2%3.4±1.5<100<1.6×107<10
    下载: 导出CSV

    表  2  高压大电流低速度零散电子枪初始设计输出参数

    Table  2.   Initial design output parameters of high voltage, high current, low velocity spread electron gun

    rc/mm ls/mm ϕc fm dac/mm
    9.3 7.7 55° 7 12.5
    下载: 导出CSV

    表  3  回旋行波管电子枪阴极各组件材料

    Table  3.   Materials of each component of the cathode of the gyro-TWT electron gun

    cathode structure material thermal conductivity/
    (W·m−1·K−1)
    thermal expansion
    coefficient/(μm·K−1)
    Young’s modulus/
    GPa
    Poisson’s
    ratio
    emission belt Ba-W alloy 200 4 300 0.28
    pre and post formed poles, support and heat shield Mo 138 5.35 330 0.38
    filament filling material alumina powder 7 5.5 350 0.22
    base steel stainless 50 11 200 0.26
    下载: 导出CSV

    表  4  阴极各组件形变量

    Table  4.   Variable deformation of cathode components

    cathode component maximum axial deformation/mm maximum radial deformation/mm
    emission belt 0.343 0.062
    pre formed pole 0.335 0.028
    post formed pole 0.34 0.06
    下载: 导出CSV
  • [1] Xu Yong, Mao Ya, Wang Weijie, et al. Proof-of-principle experiment of a 20-kW-average-power Ka-band gyro-traveling wave tube with a cut-off waveguide section[J]. IEEE Electron Device Letters, 2020, 41(5): 769-772. doi: 10.1109/LED.2020.2979629
    [2] 薛智浩, 刘濮鲲, 杜朝海. Ka波段螺旋波纹波导回旋行波管[J]. 强激光与粒子束, 2012, 24(5): 1013-1014 doi: 10.3788/HPLPB20122405.1013

    Xue Zhihao, Liu Pukun, Du Chaohai. Linear calculation of Ka-band gyro-TWT with helical waveguide[J]. High Power Laser and Particle Beams, 2012, 24(5): 1013-1014 doi: 10.3788/HPLPB20122405.1013
    [3] Zhang Minghao, Wei Yanyu, Yue Lingna, et al. A research of 140-GHz folded rectangular groove waveguide traveling-wave tube[J]. Chinese Journal of Electronics, 2015, 24(4): 873-876. doi: 10.1049/cje.2015.10.035
    [4] 安晨翔, 周宁, 陈坤, 等. 220 GHz共焦波导回旋行波管放大器衍射损耗率分析[J]. 强激光与粒子束, 2025, 37: 093003

    An Chenxiang, Zhou Ning, Chen Kun, et al. Analysis of reasonable diffraction loss rate in 220 GHz confocal waveguide gyro-TWT amplifier[J]. High Power Laser and Particle Beams, 2025, 37: 093003
    [5] Cao Yingjian, Wang Yu, Liu Guo, et al. High-power multifrequency radiation source based on gyro-TWT with external coupling feedback[J]. IEEE Transactions on Plasma Science, 2024, 52(5): 1654-1660. doi: 10.1109/TPS.2024.3400219
    [6] Hu Peng, Guo Jun, Sun Dimin, et al. Design and experiment of an X-band high-efficiency gyro-TWT demonstrating 100-kW 1-second long-pulse radiations[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2712-2718. doi: 10.1109/TED.2022.3217114
    [7] Wang Jianxun, Luo Yong, Luhmann N C. The simulation of a high-power low-velocity-spread space-charge-limited (SCL) cusp gun[J]. IEEE Transactions on Plasma Science, 2010, 38(12): 3356-3362. doi: 10.1109/TPS.2010.2085090
    [8] Samsonov S V, Leshcheva K A, Manuilov V N. Multitube helical-waveguide gyrotron traveling-wave amplifier: device concept and electron-optical system modeling[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3385-3390. doi: 10.1109/TED.2020.3001491
    [9] Jiang Wei, Lu Chaoxuan, Liu Yunpeng, et al. Investigation of a multibeam magnetron injection gun for a w-band sectorial-tunnel gyro-TWT[J]. IEEE Transactions on Electron Devices, 2021, 68(10): 5211-5214. doi: 10.1109/TED.2021.3102889
    [10] Dong Kun, Luo Yong, Li Hao, et al. Design of a novel MIG for a 140-GHz 2-kW confocal gyrotron traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3832-3836. doi: 10.1109/TED.2015.2477356
    [11] Akash, Thottappan M. Design and efficiency enhancement studies of periodically dielectric loaded W-band gyro-TWT amplifier[J]. IEEE Transactions on Electron Devices, 2020, 67(7): 2925-2932. doi: 10.1109/TED.2020.2996191
    [12] Dai Boxin, Jiang Wei, Han Binyang, et al. Investigation of a magnetron injection gun with an external anode for Ka-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2025, 72(3): 1448-1454. doi: 10.1109/TED.2025.3534181
    [13] Jiang Wei, Liu Yunpeng, Lu Chaoxuan, et al. Design and analysis of a diode magnetron injection gun for a G-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1429-1434. doi: 10.1109/TED.2022.3144649
    [14] 王威. K波段双模回旋行波管电子枪研究[D]. 成都: 电子科技大学, 2024: 12-15

    Wang Wei. Research on dual mode electron gun for K band Gyro-TWT[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 12-15
    [15] 安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001

    An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001
    [16] Xue Cun, Wang Qingyu, Ren Hanxi, et al. Case studies on time-dependent Ginzburg-Landau simulations for superconducting applications[J]. Electromagnetic Science, 2024, 2(2): 1-20.
    [17] 董坤, 罗勇, 蒋伟, 等. W波段回旋行波管新型曲线阴极磁控注入电子枪优化设计[J]. 红外与毫米波学报, 2016, 35(4): 483-487,495

    Dong Kun, Luo Yong, Jiang Wei, et al. Optimal design of a novel magnetron injection gun with curved emitter for a W-band gyrotron traveling wave tube[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 483-487,495
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-14
  • 修回日期:  2025-11-03
  • 录用日期:  2025-10-28
  • 网络出版日期:  2025-11-15

目录

    /

    返回文章
    返回