| [1] |
王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101
|
| [2] |
熊敏智, 张大才, 张夕蕊, 等. 基于蒙特卡罗均匀化的异形几何燃料棒物理性能研究[J]. 现代应用物理, 2023, 14: 040404Xiong Minzhi, Zhang Dacai, Zhang Xirui, et al. Physical properties of heterogeneous geometry fuel rods based on Monte Carlo homogenization[J]. Modern Applied Physics, 2023, 14: 040404
|
| [3] |
刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13: 010202Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
|
| [4] |
邓力, 李刚. 粒子输运蒙特卡罗模拟现状概述[J]. 计算物理, 2010, 27(6): 791-798Deng Li, Li Gang. A summarization on Monte Carlo simulation in particle transport[J]. Chinese Journal of Computational Physics, 2010, 27(6): 791-798
|
| [5] |
邓力, 李刚. 粒子输运问题的蒙特卡罗模拟方法与应用(上册)[M]. 北京: 科学出版社, 2019: 167-170Deng Li, Li Gang. Monte Carlo simulated methods and applications for particle transport problems[M]. Beijing: Science Press, 2019: 167-170
|
| [6] |
朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
|
| [7] |
王学栋, 朱金辉, 左应红, 等. 复杂地形对核爆炸瞬发中子辐射场的影响[J]. 现代应用物理, 2023, 14: 030202Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. Influence of complex terrain on prompt neutron radiation field of nuclear detonation[J]. Modern Applied Physics, 2023, 14: 030202
|
| [8] |
Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. Study on fast algorithm of neutron radiation field under complex terrain scenario based on ensemble learning approach[J]. Journal of Environmental Radioactivity, 2023, 268/269: 107244.
|
| [9] |
Al Zaman M A, Kunja L A. Effectiveness of radiation shields constructed from Martian regolith and different polymers for human habitat on Mars using MULASSIS/GEANT4 and OLTARIS[J]. AIP Advances, 2023, 13: 085108. doi: 10.1063/5.0163306
|
| [10] |
范家明. 基于TIN的DEM表面建模和精度评估研究[D]. 郑州: 解放军信息工程大学, 2007Fan Jiaming. Research on the surface modeling and accuracy evaluation of DEM based on TIN[D]. Zhengzhou: PLA Information Engineering University, 2007
|
| [11] |
许妙忠. 虚拟现实中三维地形建模和可视化技术及算法研究[D]. 武汉: 武汉大学, 2003Xu Miaozhong. Research on multi-resolution representation and visualization for terrain model in virtual reality[D]. Wuhan: Wuhan University, 2003
|
| [12] |
熊汉江, 郑先伟, 龚健雅. 面向虚拟地球的海陆地形多尺度TIN建模及可视化方法[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1597-1603Xiong Hanjiang, Zheng Xianwei, Gong Jianya. A multi-resolution TIN surface modeling and visualization method for coastal areas in virtual globe[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1597-1603
|
| [13] |
朱理, 胡超. 一种有效的规则网格到不规则三角网的转换算法[J]. 计算技术与自动化, 2006, 25(2): 67-70Zhu Li, Hu Chao. An effective transformed arithmetic from grid to TIN[J]. Computing Technology and Automation, 2006, 25(2): 67-70
|
| [14] |
张玲玉, 李瑞, 李刚, 等. 基于组合几何与自定义网格的粒子输运模拟方法[J]. 现代应用物理, 2022, 13: 010203Zhang Lingyu, Li Rui, Li Gang, et al. Particle transport simulation method based on constructive solid geometry and custom mesh[J]. Modern Applied Physics, 2022, 13: 010203
|
| [15] |
王振宇, 刘仕倡, 张小康, 等. 直接使用CAD几何的蒙特卡罗粒子输运方法研究[J]. 原子能科学技术, 2021, 55(s1): 88-91Wang Zhenyu, Liu Shichang, Zhang Xiaokang, et al. Research on Monte Carlo particle transport method directly using CAD geometry[J]. Atomic Energy Science and Technology, 2021, 55(s1): 88-91
|
| [16] |
杜华. 面向MC的辅助建模技术发展与应用研究[D]. 合肥: 中国科学技术大学, 2021Du Hua. Research on the development and application of computer-aided modeling technology for MC codes[D]. Hefei: University of Science and Technology of China, 2021
|
| [17] |
王立鹏, 曹璐, 余小任, 等. 基于直接CAD 几何模型的辐射场生成技术研究及应用[J]. 现代应用物理, 2024, 15: 030201Wang Lipeng, Cao Lu, Yu Xiaoren, et al. Research and application of radiation field generation technology based on direct CAD geometric model[J]. Modern Applied Physics, 2024, 15: 030201
|
| [18] |
王立鹏, 陈森, 张信一, 等. 基于非结构网格粒子输运的蒙特卡罗模拟计算研究[J]. 核科学与工程, 2024, 44(2): 286-294Wang Lipeng, Chen Sen, Zhang Xinyi, et al. Study on the particle transport calculation with Monte Carlo method based on unstructured grid[J]. Nuclear Science and Engineering, 2024, 44(2): 286-294
|
| [19] |
周培德. 计算几何——算法设计与分析[M]. 2版. 北京: 清华大学出版社, 2005: 96-97Zhou Peide. Computational geometry: algorithm design and analysis[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 96-97
|
| [20] |
De Kok T, Van Kreveld M, Löffler M. Generating realistic terrains with higher-order Delaunay triangulations[J]. Computational Geometry, 2007, 36(1): 52-65. doi: 10.1016/j.comgeo.2005.09.005
|
| [21] |
骆冠勇, 曹洪. 一种网格和节点同步生成的二维Delaunay网格划分算法[J]. 计算机辅助设计与图形学学报, 2007, 19(5): 605-608,615Luo Guanyong, Cao Hong. An algorithm for constructing 2D Delaunay adaptive mesh with simultaneous generation of nodes and elements[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(5): 605-608,615
|
| [22] |
郭浩然. 面向大规模三维地形构建的高性能计算支撑技术研究[D]. 郑州: 解放军信息工程大学, 2013Guo Haoran. Research on high-performance computing supporting technologies for large-scale 3D terrain construction[D]. Zhengzhou: PLA Information Engineering University, 2013
|
| [23] |
Wang Xiaodong, Zheng Xin, Yin Qian. Large scale terrain compression and real-time rendering based on wavelet transform[C]//Proceedings of the 2008 International Conference on Computational Intelligence and Security. 2008: 489-493.
|
| [24] |
魏迎梅, 周侃, 吴玲达. 基于小波变换的地形绘制关键技术研究[J]. 计算机应用研究, 2009, 26(11): 4378-4381Wei Yingmei, Zhou Kan, Wu Lingda. Key techniques on terrain rendering based on wavelet translation[J]. Application Research of Computers, 2009, 26(11): 4378-4381
|
| [25] |
X-5 Monte Carlo Team. MCNP—a general Monte Carlo N-particle transport code, version 5: volume I: overview and theory[R]. Los Alamos: Los Alamos National Laboratory, 2003.
|
| [26] |
Zuo Yinghong, Wang Jianguo, Shang Peng, et al. Study of effects of atmospheric humidity on neutron transportation and its dose field[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2046-2055. doi: 10.1109/TNS.2022.3198875
|
| [27] |
Van Wijk A J, Van Den Eynde G, Hoogenboom J E. An easy to implement global variance reduction procedure for MCNP[J]. Annals of Nuclear Energy, 2011, 38(11): 2496-2503. doi: 10.1016/j.anucene.2011.07.037
|