A high-brightness, linearly polarized laser output of 5 kW achieved by low-NA fiber
-
摘要: 为有效抑制高功率光纤激光系统中的受激布里渊散射效应,本研究采用白噪声射频信号对单频激光进行相位调制,将其光谱展宽为半高全宽89 GHz的高斯线型,从而实现对受激布里渊散射效应的有效抑制。通过采用自主制备的低数值孔径(约0.05)、大模场面积(约237 μm2)熊猫型掺镱保偏光纤,其双折射系数4.23×10−4,在抑制受激布里渊散射效应的同时也有效缓解了模式间热耦合问题,最终实现了5.09 kW窄线宽线偏振激光输出。输出光谱线宽为89 GHz,偏振消光比在整个放大过程中始终优于19.6 dB,光束质量因子M2<1.2。在最高输出功率下未观察到自脉冲或时域不稳定现象,表明受激布里渊散射效应与模式不稳定(TMI)已得到有效控制,证明该系统具备长期稳定运行的潜力。Abstract:
Background Fiber lasers have gained extensive adoption across medical, telecommunications, industrial processing, and defense sectors owing to their exceptional beam quality, operational stability, compact architecture, and high reliability. Among them, narrow-linewidth linearly polarized fiber lasers have become a key research focus due to their outstanding spectral purity and coherence, with current efforts concentrated on further scaling their output power and brightness.Purpose In this work, we demonstrate a 5.09 kW narrow-linewidth linearly polarized fiber laser system designed to overcome stimulated Brillouin scattering (SBS) and transverse mode instability (TMI).Methods A white-noise radio frequency phase modulation scheme is implemented to broaden the seed laser spectrum into a Gaussian profile with 89 GHz full width at half maximum, enabling effective SBS suppression. A polarization-maintaining ytterbium-doped fiber (PMYDF) with low numerical aperture (~0.05), large mode area (~237 μm2), and high birefringence coefficient (4.23×10−4) is employed to simultaneously mitigate SBS and intermodal thermal coupling.Results The system achieves 5.09 kW output power while maintaining an 89 GHz spectral linewidth, polarization extinction ratio above 19.6 dB, and beam quality factor of M2 < 1.2. No self-pulsing or temporal instability is observed at maximum power, confirming suppression of both SBS and TMI.Conclusions By employing a white-noise radio frequency signal to modulate the phase of a single-frequency laser, the SBS effect in high-power fiber laser systems is effectively suppressed. Concurrently, intermodal thermal coupling and SBS are further mitigated using a fabricated low-numerical-aperture, large-mode-area PMYDF. The demonstrated performance supports the feasibility of high-power, narrow-linewidth polarized fiber lasers for long-term stable operation. -
表 1 激光性能与技术对比
Table 1. Laser Performance vs. Technology
institution year technology llaser power/kW FWHM/GHz PER/dB M2 CAEP[7] 2022 optimization of the seed spectral profile 4.45 21 17.7 1.26 CAEP[8] 2023 optimization of the seed spectral profile 5 10 16.5 1.26 NUDT[9] 2023 transverse mode control 4.5 87 10.3 1.51 HUST[10] 2023 optimizing longitudinal modes in the oscillator 4.6 89 15 1.3 NUDT[11] 2025 fabrication of low NA fiber, NA~0.06 5.91 159 12.9 1.33 CAEP[12] 2025 cascaded phase modulation 5.87 111 16.3 1.33 This work 2025 fiber fabrication, NA~0.05, MFA~237 μm2 5.09 89 19.6 1.19 -
[1] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240 [2] Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z [3] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063 [4] Liu Zejin, Ma Pengfei, Su Rongtao, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A7-A14. doi: 10.1364/JOSAB.34.0000A7 [5] Ma Pengfei, Lü Yang, Zhou Pu, et al. Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system[J]. Optics Express, 2014, 22(22): 27321-27338. doi: 10.1364/OE.22.027321 [6] 柏刚, 杨依枫, 晋云霞, 等. 光谱合成激光光束特性的研究进展[J]. 激光与光电子学进展, 2019, 56: 040004Bai Gang, Yang Yifeng, Jin Yunxia, et al. Research progress on laser beam characteristics in spectral beam combining system[J]. Laser & Optoelectronics Progress, 2019, 56: 040004 [7] 王岩山, 彭万敬, 王珏, 等. 4.45kW窄线宽线偏振近单模全光纤激光器[J]. 中国激光, 2022, 49: 1816003Wang Yanshan, Peng Wanjing, Wang Jue, et al. 4.45kW narrow linewidth line-polarized near-single mode all-fiber laser[J]. Chinese Journal of Lasers, 2022, 49: 1816003 [8] 王岩山, 彭万敬, 王珏, 等. 10 GHz窄线宽线偏振近单模全光纤激光器实现5 kW功率输出[J]. 中国激光, 2023, 50: 2416002Wang Yanshan, Peng Wanjing, Wang Jue, et al. 10 GHz narrow linewidth line-polarized near-single mode all-fiber laser achieving 5 kW power output[J]. Chinese Journal of Lasers, 2023, 50: 2416002 [9] 任帅, 陈益沙, 马鹏飞, 等. 4.5kW, 0.33 nm近单模窄线宽保偏光纤激光器[J]. 强激光与粒子束, 2022, 34: 065002 doi: 10.11884/HPLPB202234.220168Ren Shuai, Chen Yisha, Ma Pengfei, et al. 4.5 kW, 0.33 nm near-single-mode narrow linewidth polarization-maintained fiber laser[J]. High Power Laser and Particle Beams, 2022, 34: 065002 doi: 10.11884/HPLPB202234.220168 [10] Liao Shibiao, Luo Tao, Xiao Runheng, et al. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed[J]. Optics Letters, 2023, 48(24): 6533-6536. doi: 10.1364/OL.507009 [11] Yang Huan, Chen Yisha, Ma Pengfei, et al. 5.85kW polarization-maintained and all-fiberized amplifier with narrow linewidth and near-diffraction-limited beam quality assisted by low-numerical-aperture active fiber[J]. Optics & Laser Technology, 2025, 190: 113208. [12] Gao Zixiang, Shu Qiang, Li Fang, et al. A 6 kW level linearly polarized near-diffraction-limited monolithic fiber laser with a 0.43 nm linewidth[J]. Photonics, 2025, 12: 701. doi: 10.3390/photonics12070701 [13] Aoki Y, Tajima K, Mito I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems[J]. Journal of Lightwave Technology, 1988, 6(5): 710-719. doi: 10.1109/50.4057 [14] Jauregui C, Eidam T, Otto H J, et al. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(1): 440-451. doi: 10.1364/OE.20.000440 [15] Zervas M N. Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase[J]. APL Photonics, 2019, 4: 022802. doi: 10.1063/1.5050523 [16] 闫景涛, 缪立军, 毛建峰, 等. 高斯白噪声相位调制的激光光谱展宽[J]. 光谱学与光谱分析, 2022, 42(3): 665-671Yan Jingtao, Miao Lijun, Mao Jianfeng, et al. Laser spectrum broadening method based on phase modulation of Gaussian white noise[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 665-671 -
下载: