留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形高功率微波脉冲压缩器的设计

骆箫扬 厉小润 陈淑涵

骆箫扬, 厉小润, 陈淑涵. 环形高功率微波脉冲压缩器的设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250256
引用本文: 骆箫扬, 厉小润, 陈淑涵. 环形高功率微波脉冲压缩器的设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250256
Luo Xiaoyang, Li Xiaorun, Chen Shuhan. Design of a ring-shaped high-power microwave pulse compressor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250256
Citation: Luo Xiaoyang, Li Xiaorun, Chen Shuhan. Design of a ring-shaped high-power microwave pulse compressor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250256

环形高功率微波脉冲压缩器的设计

doi: 10.11884/HPLPB202638.250256
详细信息
    作者简介:

    骆箫扬,1398725839@qq.com

    通讯作者:

    陈淑涵,11410057@zju.edu.cn

  • 中图分类号: TN015

Design of a ring-shaped high-power microwave pulse compressor

  • 摘要: 在高功率微波和脉冲压缩领域,相对于指数衰减的微波脉冲,平顶输出具有降低结构表面最大瞬态场以及增强系统稳定性等核心优势,因此具有重要的技术意义和应用价值。提出一种S波段基于行波储能的环形高功率微波脉冲压缩器,通过控制环形波导传输线的长度使输入微波通过定向耦合器完成线性叠加储能,通过输入信号倒相完成功率的倍增和微波信号的平稳输出。基于散射矩阵理论分析其储能过程及输入倒相之后的功率增益和平顶输出宽度,并用CST进行仿真验证。仿真结果显示,其功率增益达5.7倍以上,平顶宽度80 ns,且波形平缓,若采用金属壁表面击穿阈值300 kV/cm来估计功率容量,则脉冲压缩器的功率容量可以达到160 MW。与现有技术相比,该设计结构简单、体积紧凑、加工维护便捷,为高功率微波能量平稳输出以及两级脉冲压缩系统的研究提供新方案。
  • 图  1  环形脉冲压缩器结构示意图

    Figure  1.  Schematic diagram of the ring pulse compressor structure

    图  2  matlab迭代得出的第二和第三端口幅值曲线

    Figure  2.  Microwave amplitude performance at ports 2 and 3 obtained through matlab iteration

    图  3  环形脉冲压缩器仿真结构图

    Figure  3.  Simulation model diagram of pulse compressor

    图  4  定向耦合器仿真结构图

    Figure  4.  Simulation model diagram of directional coupler

    图  5  定向耦合器的S参数

    Figure  5.  S-parameters of directional coupler

    图  6  波导传输线仿真结构图

    Figure  6.  Simulation model diagram of waveguide transmission line

    图  7  波导传输线转折处结构图

    Figure  7.  Structural diagram of the turning point

    图  8  波导传输线的S11随倒角宽度的变化曲线

    Figure  8.  The variation curve of S11 of the waveguide transmission line with the chamfer width

    图  9  脉冲压缩器的群延时曲线图

    Figure  9.  The group delay curve graph of the pulse compressor

    图  10  谐振时的电场分布图

    Figure  10.  The electric field distribution diagram at resonance

    图  11  倒相前后的功率增益曲线

    Figure  11.  The power gain curves before and after inversion

    表  1  定向耦合器参数优化结果

    Table  1.   Results of directional coupler parameter optimization (mm)

    L1 W1 D1 W2 D2 W3
    112.37 19 3.1 17.66 7.23 3
    下载: 导出CSV
  • [1] Farkas Z D, Hogg H A, Loew G A, et al. SLED: a method of doubling SLAC's energy[C]//Proceedings 9th International Conference on the High-Energy Accelerators. 1974: 576-583.
    [2] Balakin V E, Syrachev I V. Status VLEPP RF power multiplier (VPM)[C]//3rd European Particle Accelerator Conference. 1992: 1173-1175.
    [3] Shu Guan, Zhao Fengli, He Xiang. RF study of a C-band barrel open cavity pulse compressor[J]. Chinese Physics C, 2015, 39: 057005. doi: 10.1088/1674-1137/39/5/057005
    [4] Jiang Yuliang, Shi Jiaru, Wang Ping, et al. Compact two-stage pulse compression system for producing gigawatt microwave pulses[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4533-4540. doi: 10.1109/TMTT.2021.3093554
    [5] Lin Xiancai, Zha Hao, Shi Jiaru, et al. X-band two-stage rf pulse compression system with correction cavity chain[J]. Physical Review Accelerators and Beams, 2022, 25: 120401. doi: 10.1103/PhysRevAccelBeams.25.120401
    [6] Kashiwagi S, Hayano H, Kubo K, et al. Beam loading compensation using phase to amplitude modulation method in ATF[C]//Proceedings of the 19th International Linear Accelerator Conference. 1998: 91-93.
    [7] Shu Guan, Zhao Fengli, Pei Shilun, et al. RF modulation studies on an S band pulse compressor[J]. Chinese Physics C, 2016, 40: 037002. doi: 10.1088/1674-1137/40/3/037002
    [8] Wilson P B, Farkas Z D, Ruth R D. SLED II: a new method of RF pulse compression[R]. Menlo Park: Stanford Linear Accelerator Center, 1990.
    [9] Hantista C, Farkas Z D, Kroll N M, et al. High-power RF pulse compression with SLED-II at SLAC[C]//Proceedings of International Conference on Particle Accelerators. 1993: 1196-1198.
    [10] Tantawi S G, Nantista C D, Dolgashev V A, et al. High-power multimode X-band rf pulse compression system for future linear colliders[J]. Physical Review Special Topics—Accelerators and Beams, 2005, 8: 042002. doi: 10.1103/PhysRevSTAB.8.042002
    [11] Tantawi S G, Nantista C D, Dolgashev V A, et al. Status of high-power tests of dual mode SLED-II system for an X-band linear collider[C]//Proceedings of LINAC 2004. 2004: 852-856.
    [12] Xiong Zhengfeng, Chen Huaibi, Ning Hui, et al. High power microwave system based on power combination and pulse compression of conventional klystrons[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-4.
    [13] Kazakov S Y. Pulse shape correction for RF pulse compression system[J]. Spectrum, 1992, 5: 9.
    [14] Wang Ping, Zha Hao, Syratchev I, et al. RF design of a pulse compressor with correction cavity chain for klystron-based compact linear collider[J]. Physical Review Accelerators and Beams, 2017, 20: 112001. doi: 10.1103/PhysRevAccelBeams.20.112001
    [15] Jiang Yuliang, Zha Hao, Wang Ping, et al. Demonstration of a cavity-based pulse compression system for pulse shape correction[J]. Physical Review Accelerators and Beams, 2019, 22: 082001. doi: 10.1103/PhysRevAccelBeams.22.082001
    [16] Wang Ping, Grudiev A. Single cylinder-based RF-cavity-system types for correction cavities in a klystron-based Compact Linear Collider[J]. Physical Review Accelerators and Beams, 2025, 28: 032002. doi: 10.1103/PhysRevAccelBeams.28.032002
    [17] Hassanein A, Insepov Z, Norem J, et al. Effects of surface damage on rf cavity operation[J]. Physical Review Special Topics—Accelerators and Beams, 2006, 9: 062001. doi: 10.1103/PhysRevSTAB.9.062001
    [18] Jiang Tao, Jiang Zili, Bai Weida, et al. An X-band compact rectangular waveguide TE10-circular waveguide TE01 mode converter[J]. Review of Scientific Instruments, 2023, 94: 044704. doi: 10.1063/5.0146263
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-26
  • 修回日期:  2025-11-18
  • 录用日期:  2025-10-31
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回