留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波对空间太阳电池阵的耦合效应

由俞宁 连汝慧 曹柯涵 吴建超 宋法伦 宋佰鹏 张冠军

由俞宁, 连汝慧, 曹柯涵, 等. 高功率微波对空间太阳电池阵的耦合效应[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250257
引用本文: 由俞宁, 连汝慧, 曹柯涵, 等. 高功率微波对空间太阳电池阵的耦合效应[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250257
You Yuning, Lian Ruhui, Cao Kehan, et al. Coupling effect of high-power microwave on space solar arrays[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250257
Citation: You Yuning, Lian Ruhui, Cao Kehan, et al. Coupling effect of high-power microwave on space solar arrays[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250257

高功率微波对空间太阳电池阵的耦合效应

doi: 10.11884/HPLPB202638.250257
基金项目: 国家自然科学基金项目(12375205); 高功率微波技术重点实验室项目(2023-JKW-WBSYS-02); 中央高校基本科研业务费专项资金项目(xzy012023153)
详细信息
    作者简介:

    由俞宁,ynyou6881@163.com

    通讯作者:

    宋佰鹏,bpsong@xjtu.edu.cn

  • 中图分类号: TM914.4

Coupling effect of high-power microwave on space solar arrays

  • 摘要: 空间太阳电池阵作为航天器的重要能源组成部分,在未来对抗中极易受到以高功率微波为代表的外来强电磁脉冲侵袭。为研究空间太阳电池阵的高功率微波耦合效应,以典型太阳电池阵结构和布局作为参考,搭建了高功率微波辐照作用下的太阳电池阵样品三维模型,研究了不同激励源参数条件(频率、极化方向、入射角度等)下的太阳电池阵耦合效应规律。结果表明:在2~18 GHz频率范围内,垂直极化的S波段微波辐照最容易对太阳电池阵造成诱发放电损伤,电池串间隙三结合部感应场强远高于互连片位置间隙;在微波辐照作用下太阳电池样品会感应出极强的瞬态电场,垂直极化情况下,感应场主要集中分布在电池串间隙、汇流条附近、电池片边缘;电池三结合部感应电场稳定峰值随微波入射角度的增大而减小,随微波功率密度的增大而增大;微波上升下降沿对感应电场值无明显影响;太阳电池阵串间隙周围空间的电场由间隙中心向外侧逐渐减小。该研究将为空间太阳电池阵的电磁防护设计提供参考。
  • 图  1  太阳能电池横截面结构示意图

    Figure  1.  Cross sectional schematic of the solar cell

    图  2  高功率微波的时域波形及频谱特征

    Figure  2.  Time domain waveform and spectral characteristics of high-power microwave

    图  3  太阳电池阵列样品三维模型

    Figure  3.  Three-dimensional model of solar array sample

    图  4  放置有场强监测点的三结合部

    Figure  4.  Triple junction with field strength monitoring points placed

    图  5  不同极化方式和不同频率的高功率微波辐照下太阳电池阵的耦合响应规律

    Figure  5.  Coupling effects of solar array under high-power microwave irradiation with different polarization modes and frequencies

    图  6  电池串间隙及互连片区域三结合部的感应电场波形

    Figure  6.  Induced electric field waveform at the triple junction of gap area and interconnector area

    图  7  整个太阳电池阵列样品的场分布图

    Figure  7.  Electric field distribution of the entire solar cell array sample

    图  8  太阳电池阵列敏感位置的电场分布

    Figure  8.  Electric field characterization at radiation-sensitive positions of solar arrays

    图  9  不同入射角下三结合部的感应电场波形

    Figure  9.  Induced electric field waveforms at triple junctions under different incident angles

    图  10  入射角度对感应场强稳定峰值的影响

    Figure  10.  Effect of incident angle on stable peak value of induced field strength

    图  11  不同功率密度下三结合部的感应电场波形

    Figure  11.  Induced electric field at triple junctions under different power densities

    图  12  功率密度对感应场强稳定峰值的影响

    Figure  12.  Effect of power density on stable peak value of induced field strength

    图  13  不同上升下降沿时间下三结合部的感应电场波形

    Figure  13.  Induced electric field at triple junctions under different rise/fall times

    图  14  太阳电池串间隙的周围空间场分布图

    Figure  14.  Electric field distribution map around string gaps of solar cell arrays

  • [1] 尉德杰, 朱立颖, 武建文, 等. 激光诱导航天器太阳电池阵放电电弧特性的研究与分析[J]. 电器与能效管理技术, 2024(2): 1-5,78 doi: 10.16628/j.cnki.2095-8188.2024.02.001

    Wei Dejie, Zhu Liying, Wu Jianwen, et al. Research and analysis on laser-induced discharge arc characteristics of spacecraft solar array[J]. Electrical & Energy Management Technology, 2024(2): 1-5,78 doi: 10.16628/j.cnki.2095-8188.2024.02.001
    [2] 柳青, 李存惠, 秦晓刚, 等. 高压砷化镓太阳电池阵在地球同步轨道环境下的二次放电现象[J]. 高电压技术, 2017, 43(8): 2614-2619 doi: 10.13336/j.1003-6520.hve.20170731023

    Liu Qing, Li Cunhui, Qin Xiaogang, et al. Phenomenon of secondary discharge on the high voltage GaAs solar array in geosynchronous orbit[J]. High Voltage Engineering, 2017, 43(8): 2614-2619 doi: 10.13336/j.1003-6520.hve.20170731023
    [3] 徐哲, 黄珏. 舰船电子信息装备强电磁脉冲防护技术发展[J]. 舰船电子对抗, 2021, 44(4): 35-38,93 doi: 10.16426/j.cnki.jcdzdk.2021.04.008

    Xu Zhe, Huang Jue. Protection technology development of ship electronic information equipment to strong electromagnetic pulse[J]. Shipboard Electronic Countermeasure, 2021, 44(4): 35-38,93 doi: 10.16426/j.cnki.jcdzdk.2021.04.008
    [4] 韩曹政, 王武斌, 赵伟, 等. 北斗/GPS导航系统抗高功率微波防护设计[J]. 强激光与粒子束, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219

    Han Caozheng, Wang Wubin, Zhao Wei, et al. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219
    [5] Liu Min, Cai Zongqi, Bian Li'an, et al. Study on the mechanism of high power microwave radiation effect of GaN LNA[C]//10th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. 2024: 1-4.
    [6] 陈卫, 邓潘, 程玉宝. HPM对军用电子设备的损伤机理分析[J]. 中国电子科学研究院学报, 2011, 6(5): 516-519

    Chen Wei, Deng Pan, Cheng Yubao. Analysis of damage mechanism of high power microwave on military electronic equipments[J]. Journal of China Academy of Electronics and Information Technology, 2011, 6(5): 516-519
    [7] 肖天, 高原, 秦风. 线缆高功率微波耦合特性仿真与试验研究[J]. 强激光与粒子束, 2025, 37: 023002

    Xiao Tian, Gao Yuan, Qin Feng. Simulation and experimental study on high power microwave coupling characteristics of cables[J]. High Power Laser and Particle Beams, 2025, 37: 023002
    [8] 董昱青, 韩玉兵, 高成. 窄带高功率微波对裸露线缆的耦合特性仿真[J]. 现代应用物理, 2023, 14: 030504 doi: 10.12061/j.issn.2095-6223.2023.030504

    Dong Yuqing, Han Yubing, Gao Cheng. Coupling characteristics of exposed cable irradiated by narrow band high power microwave[J]. Modern Applied Physics, 2023, 14: 030504 doi: 10.12061/j.issn.2095-6223.2023.030504
    [9] 赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215

    Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215
    [10] Jin Wenxuan, Chai Changchun, Liu Yuqian, et al. Microwave damage susceptibility trend of the silicon NPN monolithic composite transistor as a function of structure parameters[J]. High Power Laser and Particle Beams, 2019, 31: 103220.
    [11] Cao Baofeng, Zheng Yi, Zhang Xueqin, et al. Electromagnetic coupling effects of spacecraft solar panel[C]//2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). 2018: 857-861.
    [12] 居培凯. 电磁脉冲对太阳电池阵电池电路毁伤效应研究[D]. 南京: 南京理工大学, 2016: 20-32

    Ju Peikai. Research on the damage effect of electromagnetic pulse on solar cell array circuit[D]. Nanjing: Nanjing University of Science and Technology, 2016: 20-32
    [13] 王瀚翔. GaAs基太阳能电池HPM效应仿真与机理研究[D]. 西安: 西安电子科技大学, 2021: 21-52

    Wang Hanxiang. Research on the simulation and mechanism of GaAs solar cell caused by HPM effects[D]. Xi'an: Xidian University, 2021: 21-52
    [14] Yang Xiong, Zhou Rundong, Song Baipeng, et al. Suppression of dielectric surface flashover induced by strong electromagnetic field at multiple spatial scales based on above/sub-surface discharge development mechanisms[J]. Journal of Physics D: Applied Physics, 2024, 57: 085201. doi: 10.1088/1361-6463/ad0dce
    [15] Song Baipeng, Zhou Rundong, Yang Xiong, et al. Surface electrostatic discharge of charged typical space materials induced by strong electromagnetic interference[J]. Journal of Physics D: Applied Physics, 2021, 54: 275002. doi: 10.1088/1361-6463/abf44c
    [16] Okumura T, Masui H, Toyoda K, et al. Environmental effects on solar array electrostatic discharge current waveforms and test results[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 697-705. doi: 10.2514/1.41696
    [17] Toyoda K, Okumura T, Hosoda S, et al. Degradation of high-voltage solar array due to arcing in plasma environment[J]. Journal of Spacecraft and Rockets, 2005, 42(5): 947-953. doi: 10.2514/1.11602
    [18] 黄建国, 刘国青, 姜利祥, 等. 高压太阳电池阵诱发的航天器充电及放电机理[J]. 中国科学: 地球科学, 2015, 45(1): 43-51 doi: 10.1360/zd-2015-45-1-43

    Huang Jianguo, Liu Guoqing, Jiang Lixiang, et al. Mechanisms of spacecraft charging and discharging induced by high voltage solar arrays[J]. Scientia Sinica Terrae, 2015, 45(1): 43-51 doi: 10.1360/zd-2015-45-1-43
    [19] 张璐婕, 刘培国, 盖龙杰, 等. 能量选择强电磁防护技术综述[J]. 安全与电磁兼容, 2025(4): 9-18 doi: 10.3969/j.issn.1005-9776.2025.04.001

    Zhang Lujie, Liu Peiguo, Ge Longjie, et al. Review of the energy-selective high-intensity electromagnetic protection technology[J]. Safety & EMC, 2025(4): 9-18 doi: 10.3969/j.issn.1005-9776.2025.04.001
    [20] 薛正浩, 徐乐, 芦卓然. 高功率电磁脉冲对太阳能电池的仿真分析[J]. 微波学报, 2020, 36(s1): 355-357

    Xue Zhenghao, Xu Le, Lu Zhuoran. Coupling simulation analysis of high power electromagnetic pulse on solar cell[J]. Journal of Microwaves, 2020, 36(s1): 355-357
  • 加载中
图(14)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-13
  • 修回日期:  2025-11-20
  • 录用日期:  2025-11-10
  • 网络出版日期:  2025-11-27

目录

    /

    返回文章
    返回