留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波非球形冰晶粒子双偏振散射特性研究

王金虎 孙孟奇 严逸帆 武宸宇

王金虎, 孙孟奇, 严逸帆, 等. 毫米波非球形冰晶粒子双偏振散射特性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250261
引用本文: 王金虎, 孙孟奇, 严逸帆, 等. 毫米波非球形冰晶粒子双偏振散射特性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250261
Wang Jinhu, Sun Mengqi, Yan Yifan, et al. Study on dual-polarization scattering characteristics of millimeter-wave nonspherical ice crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250261
Citation: Wang Jinhu, Sun Mengqi, Yan Yifan, et al. Study on dual-polarization scattering characteristics of millimeter-wave nonspherical ice crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250261

毫米波非球形冰晶粒子双偏振散射特性研究

doi: 10.11884/HPLPB202638.250261
基金项目: 国家自然科学基金项目(41905026); 江苏省自然科学基金项目(NBK20170945); 南京信息工程大学人才启动基金项目(2016r028); 中国博士后科学基金第63批面上课题(2018M631554);江苏省333高层次人才培养工程资助项目;江苏省高等教育教改立项研究课题(2023JSJG330)
详细信息
    作者简介:

    王金虎,goldtigerwang@nuist.edu.cn

    孙孟奇,1906232669@qq.com

  • 中图分类号: TN249

Study on dual-polarization scattering characteristics of millimeter-wave nonspherical ice crystals

  • 摘要: 传统Mie散射理论基于球形粒子假设,难以精准描述大气非球形冰晶的散射行为,现有研究多局限于94 GHz单频率,缺乏毫米波/亚毫米波宽频段双偏振参数量化,制约偏振雷达气象探测精度。探究六角棱柱、六角平板等六种典型非球形冰晶在35、94、140、220 GHz的双偏振散射特性,量化差分反射率因子(ZDR)、线性退极化比(LDR)对粒子形状与取向的响应。采用离散偶极子近似法(DDA)、时域有限差分法(FDTD),结合XFDTD、HFSS验证。结果显示:除聚合体外,DDA计算后向散射截面与商用软件误差≤1.5 dB;小粒子(等效半径<100 μm)反射率对波长不敏感,大粒子呈形状相关共振且共振位置随波长右移;六角平板ZDR变化最广(9 dB至–9 dB),轴对称粒子LDR集中于–40 dB至–50 dB。双偏振参数可降低对粒子尺寸的依赖,提升宽频段冰晶识别精度,为毫米波/亚毫米波偏振雷达云微物理探测提供理论支撑。
  • 图  1  在XFDTD软件中,六种非球形冰晶粒子的示意图

    Figure  1.  Schematic diagram of six nonspherical ice crystal particles in XFDTD

    图  2  四个波长下六角棱柱和六角平板的雷达反射率因子

    Figure  2.  Radar reflectivity factors for four wavelengths for columns and plates

    图  3  四个波长下中空六棱柱和子弹花环的雷达反射率因子

    Figure  3.  Radar reflectivity factors for four wavelengths for hollows and rosettes

    图  4  四个波长下聚合体和过冷水滴的雷达反射率因子

    Figure  4.  Radar reflectivity factors for four wavelengths for aggregates and droxtals

    图  5  六角棱柱旋转90°的过程

    Figure  5.  The process of rotating a column by 90°

    图  6  六种冰晶粒子$ {\text{Z}}_{\text{DR}} $随粒子旋转的变化

    Figure  6.  Variation in $ {\text{Z}}_{\text{DR}} $ with particle rotation for six ice crystal particles

    图  7  六种冰晶粒子$ {\text{R}}_{\text{LD}} $随粒子旋转的变化

    Figure  7.  Variation in $ {\text{R}}_{\text{LD}} $ with particle rotation for six ice crystal particles

    表  1  六种典型冰晶粒子的形状及其参数[17]

    Table  1.   Tab.1 Six common shapes of ice crystal particles and their parameters

    geometric names geometric shapes axle ratio
    column $\begin{cases}a=0.35 L & (L<100 \mu m) \\ a=3.48 L^{0.5} & (L \geqslant 100 \mu m)\end{cases}$ (1)
    plate $\begin{cases}L=2 a & (a \leqslant 2 \mu m) \\ L=2.4883 a^{0.474} & (a \geqslant 5 \mu m) \\ L=2+\left(\left(2.4883 a^{0.474}-2\right) / 4\right) \cdot(a-1) & (2 \mu m<a<5 \mu m)\end{cases}$ (2)
    hollow $\begin{cases}a=0.35 L & (L<100 \mu m) \\ a=3.48 L^{0.5} & (L \geqslant 100 \mu m) \\ h=0.25 L & \end{cases}$ (3)
    rosette $\left\{\begin{array}{l}a=1.552 L^{0.63} \\ t=\dfrac{\sqrt{3} a}{2 \tan \alpha} \quad \alpha=28^{\circ}\end{array}\right.$ (4)
    aggregate $\begin{array}{ll}a_1=0.291 L_1 & a_2=0.323 L_2 \\ a_3=0.359 L_3 & a_4=0.381 L_4 \\ a_5=0.368 L_5 & a_6=0.352 L_6 \\ a_7=0.333 L_7 & a_8=0.312 L_8 \\ D=7.297 L_{\min } & \end{array}$ (5)
    droxtal $\begin{array}{ll}D=2 R & \\ a_1=R \sin \theta_1 & a_2=R \sin \theta_2 \\ L_1=R \cos \theta_1 & L_2=\cos \theta_2 \\ \theta_1=32.35^{\circ} & \theta_2=71.81^{\circ}\end{array}$ (6)
    下载: 导出CSV

    表  2  各毫米波频率下复折射率的拟合值

    Table  2.   The fitted values of the complex refractive index under each millimeter wave frequency

    frequency/GHz complex refractive index/m
    35 (8.6 mm) 1.7861+0.0011i
    94 (3.2 mm) 1.7864+0.0032i
    140 (2.1 mm) 1.7866+0.0043i
    220 (1.3 mm) 1.7868+0.0052i
    下载: 导出CSV

    表  3  对比XFDTD、HFSS和DDA计算六种非球形冰晶粒子在94 GHz下的后向散射截面

    Table  3.   Comparison of XFDTD, HFSS, and DDA calculations for six types of non-spherical ice crystal particles at 94 GHz for backscattering cross section

    particle shapes XFDTD/dBm2 HFSS/dBm2 DDA/ dBm2
    column −86.82 −84.85 −86.75
    plate −86.01 −85.63 −85.79
    hollow −87.93 −85.83 −86.01
    rosette −74.19 −75.77 −74.77
    aggregate −66.26 −60.58 −62.85
    droxtal −72.29 −69.86 −70.23
    下载: 导出CSV
  • [1] 魏邦海. 气溶胶和冰水两相粒子的散射特性[D]. 南京: 南京信息工程大学, 2015: 25-31

    Wei Banghai. Scattering properties of aerosols and ice water two-phase particle[D]. Nanjing: Nanjing University of Information Science & Technology, 2015: 25-31
    [2] 董振贤, 李妙英. 双偏振多普勒天气雷达的偏振参量及其应用[J]. 解放军理工大学学报(自然科学版), 2004, 5(3): 98-102 doi: 10.3969/j.issn.1009-3443.2004.03.025

    Dong Zhenxian, Li Miaoying. Polarimetric measurements of dual-polarization radar and application[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2004, 5(3): 98-102 doi: 10.3969/j.issn.1009-3443.2004.03.025
    [3] Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[J]. Journal of Applied Meteorology, 1976, 15(1): 69-76. doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [4] Ryzhkov A V, Zrnić D S. Comparison of dual-polarization radar estimators of rain[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(12): 249-256.
    [5] 刘黎平, 钱永甫, 王致君. 用双线偏振雷达研究云内粒子相态及尺度的空间分布[J]. 气象学报, 1996, 54(5): 590-599

    Liu Liping, Qian Yongfu, Wang Zhijun. The study of spacial distribution of phase and size of hydrometeorsin cloud by dual linear polarization radar[J]. Acta Meteorologica Sinica, 1996, 54(5): 590-599
    [6] 曹俊武, 刘黎平, 葛润生. 模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究[J]. 大气科学, 2005, 29(5): 827-836

    Cao Junwu, Liu Liping, Ge Runsheng. A study of fuzzy logic method in classification of hydrometeors based on polarimetric radar measurement[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(5): 827-836
    [7] 王金虎, 蔡嘉晗, 谢槟泽, 等. 基于Mie散射的带电粒子散射特性的研究[J]. 光散射学报, 2021, 33(1): 65-71 doi: 10.13883/j.issn1004-5929.202101009

    Wang Jinhu, Cai Jiahan, Xie Binze, et al. Study on the scattering characteristics of charged particles based on Mie scattering[J]. The Journal of Light Scattering, 2021, 33(1): 65-71 doi: 10.13883/j.issn1004-5929.202101009
    [8] Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains[J]. The Astrophysical Journal, 1973, 186: 705-714. doi: 10.1086/152538
    [9] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499. doi: 10.1364/JOSAA.11.001491
    [10] 任神河, 高明, 王明军, 等. 不同空间取向冰晶粒子的光散射[J]. 红外与激光工程, 2024, 53: 20240336 doi: 10.3788/IRLA20240336

    Ren Shenhe, Gao Ming, Wang Mingjun, et al. Light scattering of ice crystal particles with different spatial orientations[J]. Infrared and Laser Engineering, 2024, 53: 20240336 doi: 10.3788/IRLA20240336
    [11] 贺锦涛, 王明军, 张佳琳. 团聚核壳蓝藻粒子的蓝绿激光散射和吸收特性研究[J]. 光学学报, 2021, 41: 1729001 doi: 10.3788/AOS202141.1729001

    He Jintao, Wang Mingjun, Zhang Jialin. Blue-green laser scattering and absorption properties of agglomerated core-shell cyanobacteria particles[J]. Acta Optica Sinica, 2021, 41: 1729001 doi: 10.3788/AOS202141.1729001
    [12] 许小永. 非球形雨滴和冰雹微波散射特征研究[D]. 南京: 南京气象学院, 2002: 8-17

    Xu Xiaoyong. Scattering of microwaves by non-spherical raindrops and hails[D]. Nanjing: Nanjing University of Information Science & Technology, 2002: 8-17
    [13] 冯晋勤, 张深寿, 吴陈锋, 等. 双偏振雷达产品在福建强对流天气过程中的应用分析[J]. 气象, 2018, 44(12): 1565-1574 doi: 10.7519/j.issn.1000-0526.2018.12.006

    Feng Jinqin, Zhang Shenshou, Wu Chenfeng, et al. Application of dual polarization weather radar products to severe convective weather in Fujian[J]. Meteorological Monthly, 2018, 44(12): 1565-1574 doi: 10.7519/j.issn.1000-0526.2018.12.006
    [14] 罗晓翩, 冯力天, 尹微, 等. 基于相干激光雷达的双偏振探测技术[J]. 激光技术, 2025, 49(1): 8-13

    Luo Xiaopian, Feng Litian, Yin Wei, et al. Dual polarization detection technology based on coherent LiDAR[J]. Laser Technology, 2025, 49(1): 8-13
    [15] Gallagher M W, Connolly P J, Whiteway J, et al. An overview of the microphysical structure of cirrus clouds observed during EMERALD-1[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(607): 1143-1169. doi: 10.1256/qj.03.138
    [16] Baran A J. A review of the light scattering properties of cirrus[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(14/16): 1239-1260.
    [17] Hong G. Radar backscattering properties of nonspherical ice crystals at 94 GHz[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D22203.
    [18] Polyanskiy M N. Refractiveindex. info database of optical constants[J]. Scientific Data, 2024, 11: 94. doi: 10.1038/s41597-023-02898-2
    [19] 王金虎, 葛俊祥, 杨泽鑫, 等. 毫米波频率下冰晶粒子散射特性的研究[C]//第31届中国气象学会年会S1气象雷达探测技术研究与应用. 2014: 346-351

    Wang Jinhu, Ge Junxiang, Yang Zexin, et al. Study on the scattering characteristics of ice crystal particles at millimeter-wave frequencies[C]//The 31st Annual Conference of the Chinese Meteorological Society S1: Research and Application of Meteorological Radar Detection Technology. 2014: 346-351
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-15
  • 修回日期:  2025-12-16
  • 录用日期:  2025-12-02
  • 网络出版日期:  2025-12-27

目录

    /

    返回文章
    返回