留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习驱动下的光纤激光研究进展

耿翔 赵春晓 曹家宁 李景玉 吴函烁 王鹏 叶云 奚小明 张汉伟 王小林

耿翔, 赵春晓, 曹家宁, 等. 机器学习驱动下的光纤激光研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250284
引用本文: 耿翔, 赵春晓, 曹家宁, 等. 机器学习驱动下的光纤激光研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250284
Geng Xiang, Zhao Chunxiao, Cao Jianing, et al. Recent advances in machine learning-driven fiber lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250284
Citation: Geng Xiang, Zhao Chunxiao, Cao Jianing, et al. Recent advances in machine learning-driven fiber lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250284

机器学习驱动下的光纤激光研究进展

doi: 10.11884/HPLPB202638.250284
基金项目: 湖南省杰出青年基金(2023JJ10057); 国防科技大学自主创新科学基金(25-ZZCX-XXXJS-3)
详细信息
    作者简介:

    耿 翔,gx951008@163.com

    通讯作者:

    王小林,chinaphotonics@163.com

  • 中图分类号: O436

Recent advances in machine learning-driven fiber lasers

  • 摘要: 光纤激光技术历经多年发展,已在现代工业与科研领域奠定了不可或缺的重要地位。然而,传统性能优化方法在效率、速度、精度等方面存在显著局限,难以满足高性能、高效率应用场景的需求。机器学习与光纤激光的深度融合为光纤激光系统的多维度性能优化提供了全新技术范式,显著提升了激光性能并拓展了技术边界。介绍了机器学习的分类、适用范围及应用场景,并综述了近年来机器学习在光纤激光器件设计、光纤激光器仿真与预测、激光器与输出特性智能控制,以及激光特性参数测量与表征中的研究现状。基于当前研究在数据依赖性、泛化能力、可解释性、计算效率等方面的技术挑战,展望了机器学习在光纤激光领域的发展趋势。
  • 图  1  多芯超模光纤放大器的增益均衡设计[19]

    Figure  1.  Gain equalization design of multicore supermode fiber amplifier[19]

    图  2  基于1D CNN-LSTM模型的PCF参数预测方法[27]

    Figure  2.  Method for predicting PCF parameters based on the 1D CNN-LSTM model[27]

    图  3  神经网络架构[34]

    Figure  3.  Architecture of neural networks[34]

    图  4  基于ANN的PPMFMOF前向设计方法[37]

    Figure  4.  Forward design method of PPMFMOF based on ANN[37]

    图  5  基于CNN-MLP模型的双波段滤波器逆向设计[40]

    Figure  5.  Inverse design of the dual-band filter based on the CNN-MLP model[40]

    图  6  基于机器学习的超宽带MSC设计[41]

    Figure  6.  Machine learning assisted ultra-wideband MSC design[41]

    图  7  DNN辅助的多跨段ROADM系统中的功率谱预测[47]

    Figure  7.  DNN assisted optical power spectrum prediction in a multi-span ROADM system[47]

    图  8  基于PINN的高阶孤子演化模型[51]

    Figure  8.  PINN-based higher-order soliton evolution model[51]

    图  9  基于WGAN-DNN的超连续谱预测模型[54]

    Figure  9.  Supercontinuum prediction model based on a hybrid network with DNN and WGAN[54]

    图  10  基于低延迟深度强化学习算法的超快光纤激光系统[69]

    Figure  10.  Ultrafast fiber laser system based on the low-latency deep reinforcement learning algorithm[69]

    图  11  结合螺旋相位调制的深度学习像差控制方法[81]

    Figure  11.  Spiral phase modulation-assisted deep learning aberration control method[81]

    图  12  基于脉冲拟合和自适应比特算法的脉冲时域整形[86]

    Figure  12.  Pulse temporal shaping based on pulse fitting method and adaptive ratio algorithm[86]

    图  13  基于BiLSTM-NN的非相干泵浦源光谱形状逆向设计[88]

    Figure  13.  Inverse design of the incoherent pump source spectrum based on BiLSTM-NN[88]

    图  14  基于两阶段相位控制方法生成OAM光束[95]

    Figure  14.  OAM generation based on the two-stage phase control method[95]

    图  15  PCGPA和DNN算法的阿秒脉冲重建结果对比[108]

    Figure  15.  Reconstruction results of attosecond pulses with PCGPA and DNN model[108]

    图  16  DeepMD的模式分解效果[112]

    Figure  16.  Mode decomposition effects of DeepMD[112]

    图  17  基于M2-Net的M2因子估计方法[116]

    Figure  17.  M2 factor estimation method based on the M2-Net[116]

  • [1] Snitzer E. Optical maser action of Nd+3 in a barium crown glass[J]. Physical Review Letters, 1961, 7(12): 444-446. doi: 10.1103/PhysRevLett.7.444
    [2] 周朴. 我国高功率光纤激光技术学科方向的历程、现状、挑战与建议[J]. 红外与激光工程, 2023, 52: 20230071 doi: 10.3788/IRLA20230071

    Zhou Pu. Review on the discipline of high power fiber laser in China[J]. Infrared and Laser Engineering, 2023, 52: 20230071 doi: 10.3788/IRLA20230071
    [3] Zhou Jiaqi, Pan Weiwei, Qi Weiao, et al. Ultrafast Raman fiber laser: a review and prospect[J]. PhotoniX, 2022, 3: 18. doi: 10.1186/s43074-022-00064-2
    [4] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94
    [5] Gao Le, Zhang Qiming, Gu Min. Femtosecond laser micro/nano processing: from fundamental to applications[J]. International Journal of Extreme Manufacturing, 2025, 7: 022010. doi: 10.1088/2631-7990/ad943e
    [6] Wang Jianwei, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies[J]. Nature Photonics, 2020, 14(5): 273-284. doi: 10.1038/s41566-019-0532-1
    [7] Wu Jiafeng, Xu Xizhen, Liao Changrui, et al. Optimized femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss[J]. Optics Express, 2023, 31(3): 3831-3838. doi: 10.1364/OE.482198
    [8] 金东臣, 段云锋, 孙青, 等. 150 kW超高功率光纤激光器[J]. 中国激光, 2024, 51: 1416001 doi: 10.3788/CJL240738

    Jin Dongchen, Duan Yunfeng, Sun Qing, et al. 150 kW ultra-high power fiber laser[J]. Chinese Journal of Lasers, 2024, 51: 1416001 doi: 10.3788/CJL240738
    [9] Radier C, Chalus O, Charbonneau M, et al. 10 PW peak power femtosecond laser pulses at ELI-NP[J]. High Power Laser Science and Engineering, 2022, 10: e21. doi: 10.1017/hpl.2022.11
    [10] Piccoli R, Brown J M, Jeong Y G, et al. Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing[J]. Nature Photonics, 2021, 15(12): 884-889. doi: 10.1038/s41566-021-00888-7
    [11] Carstens H, Högner M, Saule T, et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV[J]. Optica, 2016, 3(4): 366-369.
    [12] Koltashev V V, Denker B I, Galagan B I, et al. 150 mW Tb3+ doped chalcogenide glass fiber laser emitting at λ > 5 μm[J]. Optics & Laser Technology, 2023, 161: 109233. doi: 10.1016/j.optlastec.2023.109233
    [13] Li Wei, Ma Pengfei, Chen Yisha, et al. Confined-doped fiber enabled kilowatt-level all-fiber laser with 1.28 GHz linewidth[J]. Optics Express, 2023, 31(5): 8855-8863. doi: 10.1364/OE.484330
    [14] 常琦, 高志强, 邓宇, 等. 强噪声下光纤激光相干合成突破千路[J]. 中国激光, 2023, 50: 0616001

    Chang Qi, Gao Zhiqiang, Deng Yu, et al. [J]. Chinese Journal of Lasers, 2023, 50: 0616001
    [15] Guo Xinqian, Zhang Linbo, Liu Jun, et al. An automatic frequency stabilized laser with hertz-level linewidth[J]. Optics & Laser Technology, 2022, 145: 107498. doi: 10.1016/j.optlastec.2021.107498
    [16] 王文笙, 宁提纲, 裴丽, 等. 基于遗传算法的少模光纤放大器增益均衡[J]. 光学学报, 2021, 41: 0906001 doi: 10.3788/AOS202141.0906001

    Wang Wensheng, Ning Tigang, Pei Li, et al. Gain equalization of few-mode fiber amplifier based on genetic algorithm[J]. Acta Optica Sinica, 2021, 41: 0906001 doi: 10.3788/AOS202141.0906001
    [17] 安毅, 蒋敏, 陈潇, 等. 机器学习预测多折射率层有源光纤的模场特性[J]. 中国激光, 2023, 50: 1101013 doi: 10.3788/CJL230476

    An Yi, Jiang Min, Chen Xiao, et al. Machine learning predicting mode properties for multi-layer active fibers[J]. Chinese Journal of Lasers, 2023, 50: 1101013 doi: 10.3788/CJL230476
    [18] 侯文强, 裴丽, 王建帅, 等. 基于神经网络和多目标优化算法的掺铋光纤放大器设计[J]. 光学学报, 2024, 44: 0206001 doi: 10.3788/AOS231173

    Hou Wenqiang, Pei Li, Wang Jianshuai, et al. Design of bismuth-doped fiber amplifier based on neural network and multi-objective optimization algorithm[J]. Acta Optica Sinica, 2024, 44: 0206001 doi: 10.3788/AOS231173
    [19] 朱福喜, 裴丽, 王建帅, 等. 多芯超模光纤放大器增益均衡设计(内封底文章)[J]. 红外与激光工程, 2024, 53: 20230504 doi: 10.3788/IRLA20230504

    Zhu Fuxi, Pei Li, Wang Jianshuai, et al. Design of gain equalization for multi-core supermode fiber amplifier (inside back cover paper)[J]. Infrared and Laser Engineering, 2024, 53: 20230504 doi: 10.3788/IRLA20230504
    [20] Jiang Xiaotian, Dong Jiawei, Song Yuchen, et al. Physics-informed machine learning for EDFA: parameter identification and gain estimation[J]. Journal of Lightwave Technology, 2025, 43(11): 5040-5054. doi: 10.1109/JLT.2025.3548285
    [21] Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis[J]. Optics Express, 2001, 8(3): 173-190. doi: 10.1364/oe.8.000173
    [22] Koshiba M, Saitoh K. Applicability of classical optical fiber theories to holey fibers[J]. Optics Letters, 2004, 29(15): 1739-1741. doi: 10.1364/OL.29.001739
    [23] Shokooh-Saremi M, Mirsalehi M M. Analysis of femtosecond optical pulse propagation in one-dimensional nonlinear photonic crystals using finite-difference time-domain method[J]. Optik, 2005, 116(10): 486-492. doi: 10.1016/j.ijleo.2005.02.014
    [24] Rodríguez-Esquerre V F, Isídio-Lima J J, Dourado-Sisnando A, et al. Artificial neural networks for the chromatic dispersion prediction of photonic crystal fibers[J]. Microwave and Optical Technology Letters, 2013, 55(9): 2179-2181. doi: 10.1002/mop.27753
    [25] Chugh S, Gulistan A, Ghosh S, et al. Machine learning approach for computing optical properties of a photonic crystal fiber[J]. Optics Express, 2019, 27(25): 36414-36425. doi: 10.1364/OE.27.036414
    [26] Yao Tianhang, Huang Tianye, Yan Bin, et al. Inverse design of dispersion for photonic devices based on LSTM and gradient-free optimization algorithms hybridization[J]. Journal of the Optical Society of America B, 2023, 40(6): 1525-1532. doi: 10.1364/JOSAB.491490
    [27] Xu Qibo, Yang Hua, Yuan Xiaofang, et al. Enhanced grey wolf algorithm for automatic tuning of an ensemble neural network in predicting PCF optical properties[J]. Optics Express, 2023, 31(26): 43790-43803. doi: 10.1364/OE.503978
    [28] Yuan Shuyu, Chen Shengchao, Yang Jianli, et al. Efficient calculation of optical properties of suspended-core fiber via a machine learning algorithm[J]. Applied Optics, 2022, 61(19): 5714-5721. doi: 10.1364/AO.458048
    [29] Ma Fuxiao, Ma Yunjie, Li Peili, et al. Inverse design of broadband dispersion compensation fiber based on deep learning and differential evolution algorithm[J]. IEEE Photonics Journal, 2023, 15: 7201307. doi: 10.1109/jphot.2023.3277129
    [30] Qin Haibo, Huang Wei, Song Binbin, et al. Hybrid method for inverse design of orbital angular momentum transmission fiber based on neural network and optimization algorithms[J]. Journal of Lightwave Technology, 2022, 40(17): 5974-5985. doi: 10.1109/JLT.2022.3185059
    [31] Deng Ang, He Linzhen, Wang Yuxi, et al. Megawatt peak-power, single-mode, mid-infrared femtosecond pulse delivery at 5–6 μm via a silica-based anti-resonant hollow core fiber[J]. Optics Letters, 2025, 50(7): 2149-2152. doi: 10.1364/OL.555306
    [32] 姚静远, 张鑫, 顾帅, 等. 基于空芯反谐振光纤的高功率激光传输技术研究进展(特邀)[J]. 中国激光, 2024, 51: 1901002 doi: 10.3788/CJL240969

    Yao Jingyuan, Zhang Xin, Gu Shuai, et al. Research progress of high-power laser transmission technology based on hollow-core anti-resonant fibers (invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901002 doi: 10.3788/CJL240969
    [33] Meng Fanchao, Zhao Xiaoting, Ding Jinmin, et al. Use of machine learning to efficiently predict the confinement loss in anti-resonant hollow-core fiber[J]. Optics Letters, 2021, 46(6): 1454-1457. doi: 10.1364/OL.422511
    [34] Meng Fanchao, Ding Jinmin, Zhao Xiaoting, et al. Artificial intelligence designer for optical Fibers: inverse design of a Hollow-Core Anti-Resonant fiber based on a tandem neural network[J]. Results in Physics, 2023, 46: 106310. doi: 10.1016/j.rinp.2023.106310
    [35] Gu Zhenyu, Ning Tigang, Pei Li, et al. Confinement loss prediction in diverse anti-resonant fibers through neural networks[J]. Optics Express, 2024, 32(6): 8903-8918. doi: 10.1364/OE.517026
    [36] Teng Fei, Jin Zhen, Chen Shuo, et al. Neural network for the inverse design of polarization-maintaining few-mode panda-type ring-core fiber[C]//2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). 2020: 1-3.
    [37] Hu Junling, Li Hongwei, Chen Hailiang, et al. Forward design method for the design of panda polarization-maintaining few-mode optical fiber based on artificial neural network[J]. Optics Express, 2024, 32(21): 36848-36864. doi: 10.1364/OE.536591
    [38] Yu Qingshan, Norris B R M, Edvell G, et al. Inverse design and optimization of an aperiodic multi-notch fiber Bragg grating using neural networks[J]. Applied Optics, 2024, 63(14): D50-D58. doi: 10.1364/AO.514987
    [39] Adibnia E, Ghadrdan M, Mansouri-Birjandi M A. Chirped apodized fiber Bragg gratings inverse design via deep learning[J]. Optics & Laser Technology, 2025, 181: 111766. doi: 10.1016/j.optlastec.2024.111766
    [40] Adibnia E, Ghadrdan M, Mansouri-Birjandi M A. Inverse design of FBG-based optical filters using deep learning: a hybrid CNN-MLP approach[J]. Journal of Lightwave Technology, 2025, 43(9): 4452-4461. doi: 10.1109/JLT.2025.3534275
    [41] Zhang Senyu, Zhang Cong, Zeng Yan, et al. Machine learning assisted ultra-wideband fiber-optics mode selective coupler design[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28: 4500110. doi: 10.1109/jstqe.2022.3171596
    [42] Fan Junjie, Huang Wei, Zhang Ran, et al. Resonance prediction and inverse design of multi-core selective couplers based on neural networks[J]. Applied Optics, 2022, 61(32): 9350-9359. doi: 10.1364/AO.474905
    [43] 李力, 郑家容, 马修泉. 基于非等温流模型与神经网络的光纤拉锥尺寸预测[J]. 中国激光, 2023, 50: 1101015 doi: 10.3788/CJL230502

    Li Li, Zheng Jiarong, Ma Xiuquan. Prediction of optical fiber tapering diameter based on nonisothermal flow model and neural network[J]. Chinese Journal of Lasers, 2023, 50: 1101015 doi: 10.3788/CJL230502
    [44] 梁宏涛, 徐建良. 机器学习算法在光功率预测中的应用[J]. 激光杂志, 2015, 36(7): 131-134 doi: 10.14016/j.cnki.jgzz.2015.07.131

    Liang Hongtao, Xu Jianliang. Application of machines learning algorithm in optical power forecasting[J]. Laser Journal, 2015, 36(7): 131-134 doi: 10.14016/j.cnki.jgzz.2015.07.131
    [45] Huang Yishen, Samoud W, Gutterman C L, et al. A machine learning approach for dynamic optical channel add/drop strategies that minimize EDFA power excursions[C]//Proceedings of the 42nd European Conference on Optical Communication. 2016: 1-3.
    [46] Gutterman C L, Mo Weiyang, Zhu Shengxiang, et al. Neural network based wavelength assignment in optical switching[C]//Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. 2017: 37-42.
    [47] Wang Zehao, Akinrintoyo E, Kilper D, et al. Optical signal spectrum prediction using machine learning and in-line channel monitors in a multi-span ROADM system[C]//2022 European Conference on Optical Communication (ECOC). 2022: 1-4.
    [48] Salmela L, Tsipinakis N, Foi A, et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 2021, 3(4): 344-354. doi: 10.1038/s42256-021-00297-z
    [49] Sui Hao, Zhu Hongna, Jia Huanyu, et al. Predicting nonlinear multi-pulse propagation in optical fibers via a lightweight convolutional neural network[J]. Optics Letters, 2023, 48(18): 4889-4892. doi: 10.1364/OL.496973
    [50] Sun Jingxuan, Shu Yiqing, Ge Yanqi, et al. Reversely exploring higher-order effects in a fiber laser through physics-informed recursive neural network[J]. ACS Photonics, 2024, 11(10): 4306-4315. doi: 10.1021/acsphotonics.4c01235.s001
    [51] Wu Jinhong, Wang Zimiao, Chen Ruifeng, et al. Efficient physics-informed neural network for ultrashort pulse dynamics in optical fibers[J]. Journal of Lightwave Technology, 2025, 43(3): 1372-1380. doi: 10.1109/JLT.2024.3477409
    [52] Salmela L, Hary M, Dudley J M, et al. Predicting supercontinuum generation dynamics using a neural network[C]//2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2021.
    [53] Liu Shuo, Han Xu, Wang Yueyu, et al. Analysis of rogue wave in the mid-infrared supercontinuum under femtosecond weak seed pulse conditions based on deep learning[J]. Chaos, Solitons & Fractals, 2024, 188: 115575.
    [54] Yang Dan, Liu Hong, Xu Bin, et al. A hybrid network with DNN and WGAN for supercontinum prediction[J]. Optical Fiber Technology, 2024, 85: 103816. doi: 10.1016/j.yofte.2024.103816
    [55] Li Sha, Xu Jun, Chen Guoliang, et al. An automatic mode-locked system for passively mode-locked fiber laser[C]//Proceedings of SPIE 9043, 2013 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing. 2013: 904313.
    [56] Shen Xuling, Li Wenxue, Yan Ming, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Optics Letters, 2012, 37(16): 3426-3428. doi: 10.1364/OL.37.003426
    [57] Wu H, Huang Pinhan, Teng Yuanhe, et al. Automatic generation of noise-like or mode-locked pulses in an ytterbium-doped fiber laser by using two-photon-induced current for feedback[J]. IEEE Photonics Journal, 2018, 10: 7105608. doi: 10.1109/jphot.2018.2880772
    [58] Andral U, Si Fodil R, Amrani F, et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2015, 2(4): 275-278. doi: 10.1364/OPTICA.2.000275
    [59] Pu Guoqing, Yi Lilin, Zhang Li, et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light: Science & Applications, 2020, 9: 13.
    [60] Pu Guoqing, Yi Lilin, Zhang Li, et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2020, 32(1): 7-10. doi: 10.1109/LPT.2019.2954806
    [61] Winters D G, Kirchner M S, Backus S J, et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Optics Express, 2017, 25(26): 33216-33225. doi: 10.1364/OE.25.033216
    [62] Luo Chao, Pu Guoqing, Hu Weisheng, et al. High-repetition-rate real-time automatic mode-locked fibre laser enabled by a pre-stretch technique[J]. IEEE Photonics Technology Letters, 2022, 34(15): 791-794. doi: 10.1109/LPT.2022.3185989
    [63] Wei Xiaoming, Jing J C, Shen Yuecheng, et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 2020, 9: 149.
    [64] Wu Xiuqi, Peng Junsong, Boscolo S, et al. Intelligent breathing soliton generation in ultrafast fiber lasers[J]. Laser & Photonics Reviews, 2022, 16: 2100191. doi: 10.1002/lpor.202100191
    [65] Fu Xing, Brunton S L, Nathan Kutz J. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation[J]. Optics Express, 2014, 22(7): 8585-8597. doi: 10.1364/OE.22.008585
    [66] Baumeister T, Brunton S L, Nathan Kutz J. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. Journal of the Optical Society of America B, 2018, 35(3): 617-626. doi: 10.1364/JOSAB.35.000617
    [67] Sun Jingxuan, Liu Zhen, Shu Yiqing, et al. Reproduction of mode-locked pulses by spectrotemporal domain-informed deep learning[J]. Optics Express, 2023, 31(21): 34100-34111. doi: 10.1364/OE.501721
    [68] Sun Chang, Kaiser E, Brunton S L, et al. Deep reinforcement learning for optical systems: a case study of mode-locked lasers[J]. Machine Learning: Science and Technology, 2020, 1: 045013. doi: 10.1088/2632-2153/abb6d6
    [69] Yan Qiuquan, Deng Qinghui, Zhang Jun, et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493-1501. doi: 10.1364/PRJ.428117
    [70] Zhan Li, Yang Shuaishuai, Xiao Qi, et al. Deep reinforcement with spectrum series learning control for a mode-locked fiber laser[J]. Photonics Research, 2022, 10(6): 1491-1500. doi: 10.1364/PRJ.455493
    [71] Kokhanovskiy A, Ivanenko A, Kobtsev S, et al. Machine learning methods for control of fibre lasers with double gain nonlinear loop mirror[J]. Scientific Reports, 2019, 9: 2916. doi: 10.1038/s41598-019-39759-1
    [72] Xiao Rui, Hou J, liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Optics Express, 2008, 16(3): 2015-2022. doi: 10.1364/oe.16.002015
    [73] Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 2010, 18(26): 27827-27835. doi: 10.1364/OE.18.027827
    [74] Kabeya D, Kermene V, Fabert M, et al. Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop[J]. Optics Express, 2015, 23(24): 31059-31068. doi: 10.1364/OE.23.031059
    [75] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
    [76] Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi: 10.1364/JOSAA.15.002745
    [77] Che Dongbo, Li Yuanyang, Wu Yunhan, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953
    [78] Ma Yanxing, Zhou Pu, Wang Xiaolin, et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 2010, 35(9): 1308-1310. doi: 10.1364/OL.35.001308
    [79] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 2019, 27(17): 24223-24230. doi: 10.1364/OE.27.024223
    [80] Zhang Xi, Li Pingxue, Zhu Yunchen, et al. Coherent beam combination based on Q-learning algorithm[J]. Optics Communications, 2021, 490: 126930. doi: 10.1016/j.optcom.2021.126930
    [81] Zuo Jing, Jia Haolong, Geng Chao, et al. Deep learning piston aberration control of fiber laser phased array by spiral phase modulation[J]. Journal of Lightwave Technology, 2022, 40(12): 3980-3991. doi: 10.1109/JLT.2022.3151628
    [82] Abuduweili A, Wang Jie, Yang Bowei, et al. Reinforcement learning based robust control algorithms for coherent pulse stacking[J]. Optics Express, 2021, 29(16): 26068-26081. doi: 10.1364/OE.426906
    [83] Wang Dan, Du Qiang, Zhou Tong, et al. Machine learning pattern recognition algorithm with applications to coherent laser combination[J]. IEEE Journal of Quantum Electronics, 2022, 58: 6100309. doi: 10.36227/techrxiv.19750192
    [84] Schimpf D N, Ruchert C, Nodop D, et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Optics Express, 2008, 16(22): 17637-17646. doi: 10.1364/OE.16.017637
    [85] Jiang Min, Su Rongtao, Zhang Pengfei, et al. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm[J]. Laser Physics Letters, 2018, 15: 065101. doi: 10.1088/1612-202X/aab250
    [86] Bu Yuanzhuang, Zhang Bin, Liu Shuailin, et al. Ultra-efficient temporal shaping scheme in nanosecond pulsed fiber MOPA system[J]. Journal of Lightwave Technology, 2025, 43(5): 2284-2290. doi: 10.1109/JLT.2024.3492043
    [87] Zibar D, Brusin A M R, de Moura U C, et al. Inverse system design using machine learning: the Raman amplifier case[J]. Journal of Lightwave Technology, 2020, 38(4): 736-753. doi: 10.1109/JLT.2019.2952179
    [88] Lan Tangyanjun, Xiang Junjiang, Zhou Gai, et al. Inverse design of incoherent Raman pump sources for U-band WDM transmission over 125 km G. 652. D fiber[J]. IEEE Photonics Journal, 2024, 16: 7202106. doi: 10.1109/jphot.2024.3453870
    [89] Liu Xiaomin, Zhang Yihao, Cai Meng, et al. SMOF: simultaneous modeling and optimization framework for Raman amplifiers in C+L-band optical networks[J]. Journal of Lightwave Technology, 2024, 42(9): 3174-3183. doi: 10.1109/JLT.2024.3359255
    [90] Teğin U, Rahmani B, Kakkava E, et al. Learning spatiotemporal nonlinearities in graded-index multimode fibers with deep neural networks[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019.
    [91] Hary M, Salmela L, Dudley J M, et al. Machine learning control of nonlinear fiber supercontinuum generation for application in molecular spectroscopy[C]//Optica Advanced Photonics Congress 2022. 2022: NpTu1G. 2.
    [92] Hoang V T, Boussafa Y, Sader L, et al. Smart control of supercontinuum generation by machine learning towards multiphoton microscopy applications[C]//2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2023.
    [93] Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 2007, 15(4): 1913-1922. doi: 10.1364/OE.15.001913
    [94] Dufresne E R, Spalding G C, Dearing M T, et al. Computer-generated holographic optical tweezer arrays[J]. Review of Scientific Instruments, 2001, 72(3): 1810-1816. doi: 10.1063/1.1344176
    [95] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 2020, 8(5): 715-722. doi: 10.1364/PRJ.388551
    [96] Hou Tianyue, An Yi, Chang Qi, et al. Deep learning of coherent laser arrays in angular domain for orbital angular momentum beams customization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28: 0900110. doi: 10.1109/jstqe.2022.3153965
    [97] Oguz I, Hsieh J L, Dinc N U, et al. Programming nonlinear propagation for efficient optical learning machines[J]. Advanced Photonics, 2024, 6: 016002. doi: 10.1117/1.ap.6.1.016002
    [98] Gobé B, Saucourt J, Shpakovych M, et al. Machine learning method to measure the transmission matrix of a multimode optical fiber without reference beam for 3D beam tailoring[C]//Proceedings of SPIE 12871, Laser Resonators, Microresonators, and Beam Control XXVI. 2024: 128710F.
    [99] Saucourt J, Gobé B, Helbert D, et al. Machine learning-driven complex models for wavefront shaping through multimode fibers[J]. Optical Fiber Technology, 2024, 88: 104017. doi: 10.1016/j.yofte.2024.104017
    [100] 韦芊屹, 倪洁蕾, 李灵, 等. 超高时空分辨显微成像技术研究进展[J]. 物理学报, 2023, 72(17): 178701

    Wei Qianyi, Ni Jielei, Li Ling, et al. Research progress of ultra-high spatiotemporally resolved microscopy[J]. Acta Physica Sinica, 2023, 72: 178701
    [101] 孟黎辉, 兰鹏飞, 陆培祥. 高平均功率高次谐波光源的研究进展(特邀)[J]. 光子学报, 2024, 53: 0653202 doi: 10.3788/gzxb20245306.0653202

    Meng Lihui, Lan Pengfei, Lu Peixiang. Research progress of high average power high harmonic source (Invited)[J]. Acta Photonica Sinica, 2024, 53: 0653202 doi: 10.3788/gzxb20245306.0653202
    [102] 吴琴菲, 文锦辉. 基于智能搜寻者优化的频率分辨光学开关重构算法[J]. 物理学报, 2021, 70(9): 090601

    Wu Qinfei, Wen Jinhui. Reconstructing algorithm for frequency-resolved optical gating based on intelligent seeker optimization[J]. Acta Physica Sinica, 2021, 70: 090601
    [103] 毛安君, 刘呈普. 多FROG构型下非方形迹的超短脉冲重建[J]. 中国激光, 2021, 48: 0704004 doi: 10.3788/CJL202148.0704004

    Mao Anjun, Liu Chengpu. Ultrashort pulse reconstruction from non-square FROG traces in different geometric schemes[J]. Chinese Journal of Lasers, 2021, 48: 0704004 doi: 10.3788/CJL202148.0704004
    [104] Jensen S, Anderson M E. Measuring ultrashort optical pulses in the presence of noise: an empirical study of the performance of spectral phase interferometry for direct electric field reconstruction[J]. Applied Optics, 2004, 43(4): 883-893. doi: 10.1364/AO.43.000883
    [105] Zahavy T, Dikopoltsev A, Moss D, et al. Deep learning reconstruction of ultrashort pulses[J]. Optica, 2018, 5(5): 666-673. doi: 10.1364/OPTICA.5.000666
    [106] Zhu Zheyuan, White J, Chang Zenghu, et al. Attosecond pulse retrieval from noisy streaking traces with conditional variational generative network[J]. Scientific Reports, 2020, 10: 5782. doi: 10.1038/s41598-020-62291-6
    [107] Stanfield M, Ott J, Gardner C, et al. Real-time reconstruction of high energy, ultrafast laser pulses using deep learning[J]. Scientific Reports, 2022, 12: 5299. doi: 10.1038/s41598-022-09041-y
    [108] Meng Lihui, Liang Shiqi, He Lixin, et al. Deep learning for isolated attosecond pulse reconstruction with the all-optical method[J]. Journal of the Optical Society of America B, 2023, 40(10): 2536-2545. doi: 10.1364/JOSAB.489019
    [109] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation: I[J]. Journal of the Optical Society of America A, 1993, 10(9): 1875-1881. doi: 10.1364/JOSAA.10.001875
    [110] Bianco V, Memmolo P, Paturzo M, et al. Quasi noise-free digital holography[J]. Light: Science & Applications, 2016, 5: e16142.
    [111] An Yi, Huang Liangjin, Li Jun, et al. Learning to decompose the modes in few-mode fibers with deep convolutional neural network[J]. Optics Express, 2019, 27(7): 10127-10137. doi: 10.1364/OE.27.010127
    [112] Jiang Min, An Yi, Su Rongtao, et al. Deep mode decomposition: real-time mode decomposition of multimode fibers based on unsupervised learning[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28: 0900207. doi: 10.1109/jstqe.2022.3195203
    [113] Kim B, Na J, Jeong Y. Convolutional neural network combined with stochastic parallel gradient descent to decompose fiber modes based on far-field measurements[J]. Journal of Lightwave Technology, 2023, 41(18): 5973-5982. doi: 10.1109/JLT.2023.3276366
    [114] Dong Xiaowei, Yu Zhihui. Modal decomposition in multimode optical fibres by solving the challenges posed by phase ambiguity and large datasets[J]. Journal of Modern Optics, 2024, 71(19/21): 753-761. doi: 10.1080/09500340.2025.2452875
    [115] An Yi, Li Jun, Huang Liangjin, et al. Deep learning enabled superfast and accurate M2 evaluation for fiber beams[J]. Optics Express, 2019, 27(13): 18683-18694. doi: 10.1364/OE.27.018683
    [116] Jiang Min, An Yi, Huang Liangjin, et al. M2 factor estimation in few-mode fibers based on a shallow neural network[J]. Optics Express, 2022, 30(15): 27304-27313. doi: 10.1364/OE.462170
    [117] Wei Mengda, Liao Meisong, Chen Liang, et al. Practical and accurate evaluation of numerical aperture and beam quality factor in photonic crystal fibers by mechanical learning[J]. IEEE Photonics Journal, 2025, 17: 5800108. doi: 10.1109/jphot.2024.3506622
  • 加载中
图(17)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-12-30
  • 录用日期:  2025-12-25
  • 网络出版日期:  2026-01-17

目录

    /

    返回文章
    返回