留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡-放大一体化光纤激光器研究进展

段梦 孟祥明 吴函烁 叶云 王鹏 张汉伟 王小林

段梦, 孟祥明, 吴函烁, 等. 振荡-放大一体化光纤激光器研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250289
引用本文: 段梦, 孟祥明, 吴函烁, 等. 振荡-放大一体化光纤激光器研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250289
Duan Meng, Meng Xiangming, Wu Hanshuo, et al. Research progress on Oscillating Amplifying Integrated Fiber Lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250289
Citation: Duan Meng, Meng Xiangming, Wu Hanshuo, et al. Research progress on Oscillating Amplifying Integrated Fiber Lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250289

振荡-放大一体化光纤激光器研究进展

doi: 10.11884/HPLPB202638.250289
基金项目: 国家自然科学基金项目(62305390) ;湖南省杰出青年基金项目(2023JJ10057) ;国防科技大学自主创新科学基金项目(25-ZZCX-XXXJS-3)
详细信息
    作者简介:

    段 梦,duanmeng168@163.com

    通讯作者:

    吴函烁,whsopt@126.com

    王小林,chinaphotonics@163.com

  • 中图分类号: TN248

Research progress on Oscillating Amplifying Integrated Fiber Lasers

  • 摘要: 振荡-放大一体化光纤激光器因其兼具振荡器结构简单、抗反射性能优异以及放大器高效率等优势,在高功率激光领域展现出广阔的应用前景。从理论研究和实验研究两个维度综述了振荡-放大一体化光纤激光器的最新研究进展。在理论研究层面,重点梳理了包含模式不稳定效应及非线性效应的理论模型研究进展;在实验研究层面,按波长维度的常规波段、短波长、超连续谱归纳了单端输出振荡-放大一体化光纤激光器的研究成果,并梳理了双端输出结构的最新进展。基于上述分析,本文指出当前在理论模型普适性局限与系统性实验研究的不足,并对未来发展方向进行了展望。
  • 图  1  中国工程物理研究院振荡-放大一体化光纤激光器稳态功率分布仿真结果[15]

    Figure  1.  Steady-state power distribution simulation results of the OAIFL in CAEP [15]

    图  2  国防科技大学双端输出振荡-放大一体化光纤激光器输出功率和效率随光栅反射率变化的仿真结果[17]

    Figure  2.  Simulation results of output power and efficiency versus grating reflectivity for the dual-port output OAIFL in NUDT [17]

    图  5  中国工程物理研究院3.7 kW振荡-放大一体化光纤激光器椭圆形圆柱体封装示意图[20]

    Figure  5.  Schematic diagram of the elliptical cylindrical packaging for the 3.7 kW OAIFL in CAEP [20]

    图  3  国防科技大学振荡-放大一体化光纤激光器不同泵浦配置下改变振荡部分和放大部分的光纤长度比以及OCFBG反射率的仿真结果[18]

    Figure  3.  Simulation results of the OAIFL under different pumping configurations, with varied fiber length ratios between the oscillator and amplifier sections and OCFBG reflectivity in NUDT [18]

    图  4  南京理工大学泵浦共享(PSOA)结构和泵浦无关(PIOA)结构下振荡器输出功率和前向ASE功率随反向泵浦功率变化仿真结果[19]

    Figure  4.  The simulation results of the oscillator output power and forward ASE power versus reverse pump power under the pump-sharing oscillator-amplifier (PSOA) structure and pump-independent oscillator-amplifier (PIOA) structure in NJUST [19]

    图  6  国防科技大学振荡-放大一体化光纤激光器不同长度比和不同OCFBG反射率下的仿真结果[23]

    Figure  6.  Simulation results of the OAIFL with varied length ratios and OCFBG reflectivities in NUDT [23]

    图  7  吉林大学掺杂比例与弯曲半径对25/400 μm部分掺杂YDF中模式耦合系数的影响仿真结果[25]

    Figure  7.  Simulation results of the effects of doping ratio and bending radius on the mode coupling coefficient in 25/400 μm partially-doped YDF in JLU[25]

    图  8  国防科技大学3.5 kW双端泵浦振荡-放大一体化光纤激光器[28]

    Figure  8.  3.5 kW dual-end pumped OAIFL in NUDT [28]

    图  9  国防科技大学5 kW振荡-放大一体化光纤激光器实验结果[29]

    Figure  9.  Experimental results of the 5 kW OAIFL in NUDT [29]

    图  10  中国工程物理研究院3.7 kW振荡-放大一体化光纤激光器[20]

    Figure  10.  3.7 kW OAIFL from CAEP [20]

    图  11  华中科技大学武汉光电国家研究中心22.07 kW振荡-放大一体化光纤激光器[30]

    Figure  11.  22.07 kW OAIFL from Wuhan National Laboratory for Optoelectronics, HUST[30]

    图  12  国防科技大学6 kW基于纺锤形YDF的振荡-放大一体化光纤激光器[23]

    Figure  12.  6 kW OAIFL based on spindle-shaped YDF from NUDT [23]

    图  13  中国工程物理研究院5 kW振荡-放大一体化光纤激光器[31]

    Figure  13.  5 kW OAIFL in CAEP [31]

    图  14  加拿大麦吉尔大学3 kW振荡-放大一体化光纤激光器[32]

    Figure  14.  3 kW OAIFL in McGill University, Canada [32]

    图  15  国防科技大学长波段LD泵浦2 kW振荡-放大一体化光纤激光器[37]

    Figure  15.  2 kW long-wavelength LD-pumped OAIFL in NUDT [37]

    图  16  国防科技大学万瓦振荡-放大一体化光纤激光器[38]

    Figure  16.  10 kW-class OAIFL in NUDT [38]

    图  17  吉林大学5 kW基于25/400 µm部分掺杂YDF的振荡-放大一体化光纤激光器[25]

    Figure  17.  5 kW OIFL based on 25/400 µm partially-doped YDF in JLU [25]

    图  18  北京航天控制设备研究所5kW振荡-放大一体化光纤激光器[41]

    Figure  18.  5kW OAIFL in BIACD [41]

    图  19  清华大学常规波段2.19 kW窄线宽振荡-放大一体化光纤激光器[27]

    Figure  19.  Conventional band 2.19 kW narrow-linewidth OAIFL in THU [27]

    图  20  国防科技大学/电子科技大学振荡-放大一体化QCW光纤激光器[40]

    Figure  20.  The oscillating-amplifying integrated QCW fiber laser in NUDT/UESTC [40]

    图  21  清华大学300 W近单模1018 nm振荡-放大一体化光纤激光器[26]

    Figure  21.  300 W near-single-mode 1018 nm OAIFL in THU [26]

    图  22  南京理工大学3.1 kW 1050 nm窄线宽振荡-放大一体化光纤激光器[19]

    Figure  22.  3.1 kW 1050 nm narrow-linewidth OAIFL in NJUST [19]

    图  23  国防科技大学3.5 kW 1050 nm振荡-放大一体化光纤激光器[33]

    Figure  23.  3.5 kW 1050 nm OAIFL in NUDT [33]

    图  24  法国利摩日大学超连续谱振荡-放大一体化光纤激光器光谱图[39]

    Figure  24.  Spectrum diagram of the supercontinuum OAIFL in UNILIM, France [39]

    图  25  国防科技大学2×2 kW双端输出振荡-放大一体化光纤激光器结构图[17]

    Figure  25.  Structure diagram of the 2×2 kW B-OAIFL in NUDT [17]

    图  26  国防科技大学2×4 kW双端输出振荡-放大一体化光纤激光器[50]

    Figure  26.  2×4 kW B-OAIFL in NUDT [50]

    表  1  单端输出振荡-放大一体化光纤激光器研究成果汇总

    Table  1.   Summary of research achievements for single-end output OAIFL

    year institution power/W M2 efficiency research content
    2018 CAEP 2031 1.40 82.7% conventional broad spectrum[15]
    2018 INCLST 1570 1.37 71.4% conventional broad spectrum[14]
    2019 THU 300 1.19 79.3% 1018 nm laser[26]
    2019 THU 2190 1.46 78.3% conventional narrow spectrum[27]
    2021 CAEP 3712 1.45 80.3% conventional broad spectrum[20-21]
    2021 NUDT 3500 1.24 87.0% conventional broad spectrum[28]
    2021 NUDT 5009 2.84 80.9% conventional broad spectrum[29]
    2022 NJUST 3100 1.33 76.7% 1050 nm laser[19]
    2022 HUST 22070 9.68 84.0% conventional broad spectrum[30]
    2023 CAEP 5065 \ 71.3% conventional broad spectrum[31]
    2023 McGill 3030 \ 71.0% conventional broad spectrum[32]
    2023 NUDT 6020 1.79 84.1% conventional broad spectrum[23]
    2023 NUDT 3500 1.29 86.3% 1050 nm laser[33]
    2023 NUDT 4800 1.75 85.3% 1050 nm laser[34]
    2023 NUDT 5030 1.47 83.1% 1050 nm laser[35]
    2023 NUDT 3039 1.52 85.1% 1050 nm laser[36]
    2024 NUDT 2050 1.70 80.0% conventional broad spectrum[37]
    2024 NUDT 10170 4.10 70.6% conventional broad spectrum[38]
    2024 UNILIM 40.7 \ 28.5% supercontinuum[39]
    2024 JLU 5100 1.2 76.0% conventional broad spectrum[25]
    2024 NUDT/UESTC 166.7(average)
    1682(peak)
    1.67 75.0% quasi-continuous wave[40]
    2025 BIACD 5020 1.29 78.0% conventional broad spectrum[41]
    下载: 导出CSV
  • [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [2] Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications [invited][J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [3] Galvanauskas A. High power fiber lasers[J]. Optics and Photonics News, 2004, 15(7): 42-47.
    [4] Zuo Jiexi, Lin Xuechun. High-power laser systems[J]. Laser & Photonics Reviews, 2022, 16: 2100741.
    [5] Zhao Xiaohui, Gao Yu, Xu Mei Jian, et al. Studies on nanosecond laser induced damage to silica fibers[J]. Acta Physica Sinica, 2008, 57: 5027-5034.
    [6] Chapman T, Michel P, Di Nicola J M G, et al. Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target[J]. Journal of Applied Physics, 2019, 125: 033101. doi: 10.1063/1.5070066
    [7] 段磊, 徐润亲, 宋云波, 等. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究[J]. 物理学报, 2023, 72: 104203 doi: 10.7498/aps.72.20222464

    Duan Lei, Xu Runqin, Song Yunbo, et al. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser[J]. Acta Physica Sinica, 2023, 72: 104203 doi: 10.7498/aps.72.20222464
    [8] 李昊, 叶新宇, 王蒙, 等. 飞秒激光刻写光纤布拉格光栅实现8 kW光纤振荡器[J]. 中国激光, 2022, 49: 2316001

    Li Hao, Ye Xinyu, Wang Meng, et al. 8 kW fiber oscillator realized by femtosecond laser inscribed fiber Bragg grating[J]. Chinese Journal of Lasers, 2022, 49: 2316001
    [9] 李登科, 尹路, 汤亚洲, 等. 低反光纤光栅对光纤激光器光谱展宽影响研究[J]. 激光与红外, 2018, 48(4): 486-492

    Li Dengke, Yin Lu, Tang Yazhou, et al. Study on the effect of output coupler fiber Bragg grating on fiber laser spectral broadening[J]. Laser & Infrared, 2018, 48(4): 486-492
    [10] 饶斌裕, 李昊, 杨保来, 等. 基于自研器件的全光纤激光振荡器突破万瓦级[J]. 中国激光, 2024, 51: 1915001 doi: 10.3788/CJL240855

    Rao Binyu, Li Hao, Yang Baolai, et al. All-fiber laser oscillator based on home-made devices surpassing 10 kW level[J]. Chinese Journal of Lasers, 2024, 51: 1915001 doi: 10.3788/CJL240855
    [11] 张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34: 021002

    Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002
    [12] 王小林, 陶汝茂, 杨保来, 等. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国激光, 2018, 45: 0801008 doi: 10.3788/CJL201845.0801008

    Wang Xiaolin, Tao Rumao, Yang Baolai, et al. Relationship between transverse mode instability and stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J]. Chinese Journal of Lasers, 2018, 45: 0801008 doi: 10.3788/CJL201845.0801008
    [13] Yang Baolai, Zhang Hanwei, Shi Chen, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20: 025802. doi: 10.1088/2040-8986/aa9ec0
    [14] Hejaz K, Shayganmanesh M, Roohforouz A, et al. Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification[J]. Applied Optics, 2018, 57(21): 5992-5997. doi: 10.1364/AO.57.005992
    [15] 舒强, 李成钰, 林宏奂, 等. 2 kW抗反射振荡-放大一体化光纤激光器[J]. 中国激光, 2018, 45: 0801004 doi: 10.3788/CJL201845.0801004

    Shu Qiang, Li Chengyu, Lin Honghuan, et al. 2 kW class antireflection fiber laser with oscillator-amplifier integration[J]. Chinese Journal of Lasers, 2018, 45: 0801004 doi: 10.3788/CJL201845.0801004
    [16] 王小林, 张汉伟, 史尘, 等. 基于SeeFiberLaser的光纤激光建模与仿真[M]. 北京: 科学出版社, 2021

    Wang Xiaolin, Zhang Hanwei, Shi Chen, et al. Fiber laser modeling and simulation based on SeeFiberLaser[M]. Beijing: Science Press, 2021
    [17] Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. A novel bidirectional output oscillating-amplifying integrated fiber laser with 2 ports × 2 kW level near-single-mode output[J]. IEEE Photonics Journal, 2023, 15: 1500209. doi: 10.1109/jphot.2022.3230376
    [18] Zeng Lingfa, Shi Chen, Zhong Hairong, et al. Theoretical and experimental research on output characteristics of oscillating-amplifying integrated fiber laser[C]//Proceedings Volume 12614, 14th International Photonics and Optoelectronics Meetings (POEM 2022). 2022.
    [19] Zheng Yunhan, Han Zhigang, Li Yonglong, et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 2022, 30(8): 12670-12683.
    [20] Yan Donglin, Liao Ruoyu, Guo Chao, et al. A 3.7-kW Oscillating-amplifying integrated fiber laser featuring a compact oval-shaped cylinder package[J]. Micromachines, 2023, 14: 264. doi: 10.3390/mi14020264
    [21] Yan Donglin, Guo Chao, Zhao Pengfei, et al. A simple O-shaped cylinder fiber laser without inter-cladding-power-strippers[C]//Proceedings Volume 11890, Advanced Lasers, High-Power Lasers, and Applications XII. 2021.
    [22] Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letters, 2017, 14: 025101. doi: 10.1088/1612-202X/aa4fbf
    [23] Zeng Lingfa, Yang Huan, Xi Xiaoming, et al. Optimization and demonstration of 6 kW oscillating-amplifying integrated fiber laser employing spindle-shaped fiber to suppress SRS and TMI[J]. Optics & Laser Technology, 2023, 159: 108903. doi: 10.1016/j.optlastec.2022.108903
    [24] Kong Lingchao, Leng Jinyong, Zhou Pu, et al. Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier[J]. High Power Laser Science and Engineering, 2018, 6: e25. doi: 10.1017/hpl.2018.15
    [25] Cui Na, Liu Lie, Guo Shaofeng, et al. 5 kW single-mode oscillating-amplifying integrated fiber laser through tightly bent confined ytterbium-doped fiber[J]. Optics Express, 2024, 32(26): 45707-45719. doi: 10.1364/OE.541166
    [26] Tian Jiading, Xiao Qirong, Li Dan, et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2019, 2(4): 1138-1147. doi: 10.1364/OSAC.2.001138
    [27] Huang Yusheng, Yan Ping, Wang Zehui, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser[J]. Optics Express, 2019, 27(3): 3136-3145. doi: 10.1364/OE.27.003136
    [28] Zeng Lingfa, Wang Xiaolin, Yang Baolai, et al. A 3.5-kW near-single-mode oscillating–amplifying integrated fiber laser[J]. High Power Laser Science and Engineering, 2021, 9: e41. doi: 10.1017/hpl.2021.31
    [29] Zeng Lingfa, Xi Xiaoming, Zhang Hanwei, et al. Demonstration of the reliability of a 5-kW-level oscillating–amplifying integrated fiber laser[J]. Optics Letters, 2021, 46(22): 5778-5781. doi: 10.1364/OL.445153
    [30] 施建宏, 杜天怡, 马盖明, 等. 全国产化工业光纤激光器实现单纤22.07 kW功率稳定输出[J]. 中国激光, 2022, 49: 2416003

    Shi Jianhong, Du Tianyi, Ma Gaiming, et al. All-national industrial fiber laser achieves stable 22.07 kW power output from a single fiber[J]. Chinese Journal of Lasers, 2022, 49: 2416003
    [31] Liao Ruoyu, Yang Xianheng, Zhao Pengfei, et al. Modified oscillating-amplifying integrated fiber laser for stimulated Raman scattering suppression[C]//Proceedings Volume 12595, Advanced Fiber Laser Conference (AFL2022). 2022.
    [32] Lin Weixuan, Bussières-Hersir M H, Auger M, et al. 3 kW single-end forward-pumped fiber laser via pump recycler and oscillator length optimization[C]//2023 Conference on Lasers and Electro-Optics (CLEO). 2023: 1-2.
    [33] 孟祥明, 杨保来, 奚小明, 等. 3.5 kW 1050 nm近单模全光纤激光放大器[J]. 光学学报, 2023, 43: 1714001 doi: 10.3788/AOS230555

    Meng Xiangming, Yang Baolai, Xi Xiaoming, et al. All-fiber laser amplifier of 3.5 kW and 1050 nm with near-single-mode[J]. Acta Optica Sinica, 2023, 43: 1714001 doi: 10.3788/AOS230555
    [34] Meng Xiangming, Li Fengchang, Yang Baolai, et al. A 4.8-kW high-efficiency 1050-nm monolithic fiber laser amplifier employing a pump-sharing structure[J]. Frontiers in Physics, 2023, 11: 1255125. doi: 10.3389/fphy.2023.1255125
    [35] Meng Xiangming, Li Fengchang, Yang Baolai, et al. A 5 kW nearly-single-mode monolithic fiber laser emitting at~1050 nm employing asymmetric Bi-tapered ytterbium-doped fiber[J]. Photonics, 2023, 10: 1158. doi: 10.3390/photonics10101158
    [36] Meng Xiangming, Ye Yun, Yang Baolai, et al. Demonstration of 3 kW-level nearly single mode monolithic fiber amplifier emitting at 1050 Nm employing tapered Yb-doped fiber[J]. IEEE Photonics Journal, 2023, 15: 1501507. doi: 10.1109/jphot.2023.3277201
    [37] 王鹏, 孟祥明, 吴函烁, 等. 长波段半导体激光泵浦光纤激光器实现2 kW功率输出[J]. 强激光与粒子束, 2024, 36: 031001 doi: 10.11884/HPLPB202436.240035

    Wang Peng, Meng Xiangming, Wu Hanshuo, et al. 2 kW fiber laser pumped by long-wavelength laser diodes[J]. High Power Laser and Particle Beams, 2024, 36: 031001 doi: 10.11884/HPLPB202436.240035
    [38] 曾令筏. 大功率振荡-放大一体化光纤激光器研究[D]. 长沙: 国防科技大学, 2024: 136-150

    Zeng Lingfa. Research on high-power oscillator-amplifier integrated fiber laser[D]. Changsha: National University of Defense Technology, 2024: 136-150
    [39] Abbouab C, Malleville M A, Leconte B, et al. 40 W of supercontinuum generated by a self-pulsed pump-sharing oscillator-amplifier[J]. Applied Optics, 2024, 63(2): 377-382. doi: 10.1364/AO.511239
    [40] 雷晶晶. 振荡放大一体化QCW光纤激光器研究[D]. 成都: 电子科技大学, 2024: 38-50

    Lei Jingjing. Research on oscillator-amplifier integrated QCW fiber laser[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 38-50
    [41] Wu Jiazheng, Yu Miao, Cao Yi, et al. A 5 kW near-single-mode oscillating–amplifying fiber laser employing a broadband output coupler with simultaneous Raman suppression and spectral narrowing[J]. Photonics, 2025, 12: 813. doi: 10.3390/photonics12080813
    [42] 中国科学院软件研究所. SeeFiberLaser光纤激光仿真软件[EB/OL].

    0-12-14). http: //www. seelight. net/html/SFLaser/index. html. (Institute of Software, Chinese Academy of Sciences. SeeFiberLaser optical fiber laser simulation software[EB/OL]. (2020-12-14). http://www.seelight.net/html/SFLaser/index.html.
    [43] 丁欣怡, 王力, 曾令筏, 等. 双端输出近单模准连续全光纤激光器[J]. 物理学报, 2023, 72: 154205 doi: 10.7498/aps.72.20230616

    Ding Xinyi, Wang Li, Zeng Lingfa, et al. Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser[J]. Acta Physica Sinica, 2023, 72: 154205 doi: 10.7498/aps.72.20230616
    [44] 王小林, 曾令筏, 叶云, 等. LD泵浦新型高功率掺镱光纤激光器研究(特邀)[J]. 中国激光, 2024, 51: 1901013 doi: 10.3788/CJL240948

    Wang Xiaolin, Zeng Lingfa, Ye Yun, et al. Directly LD pumped novel high power ytterbium-doped fiber laser (Invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901013 doi: 10.3788/CJL240948
    [45] 刘佳琪, 曾令筏, 史尘, 等. 双端输出全光纤振荡器突破8 kW高功率输出[J]. 强激光与粒子束, 2023, 35: 081003 doi: 10.11884/HPLPB202335.230201

    Liu Jiaqi, Zeng Lingfa, Shi Chen, et al. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35: 081003 doi: 10.11884/HPLPB202335.230201
    [46] 李科, 叶云, 李欣然, 等. 4.5 kW, 1050 nm双端输出近单模全光纤激光振荡器[J]. 物理学报, 2025, 74: 104203 doi: 10.7498/aps.74.20250072

    Li Ke, Ye Yun, Li Xinran, et al. 4.5 kW, 1050 nm bidirectional output near-single-mode all-fiber laser oscillator[J]. Acta Physica Sinica, 2025, 74: 104203 doi: 10.7498/aps.74.20250072
    [47] Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Theoretical demonstration of a novel bidirectional output oscillating-amplifying integrated fiber laser[C]//Proceedings Volume 12595, Advanced Fiber Laser Conference (AFL2022). 2022.
    [48] Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Demonstration of a bidirectional oscillating-amplifying integrated fiber laser with two ports times 2.5kW[C]//Proceedings Volume 12792, Eighteenth National Conference on Laser Technology and Optoelectronics. 2023: 1279210.
    [49] Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Demonstration of 3kW × 2 ports bidirectional output oscillating-amplifying integrated fiber laser employing chirped and tilted fiber Bragg gratings for co-SRS suppression[J]. Optics Express, 2023, 31(17): 28400-28412. doi: 10.1364/OE.494530
    [50] Liu Jiaqi, Zeng Lingfa, Wang Xiaolin, et al. 2 × 4 kW near-single-mode laser output assisted by an optimized bidirectional oscillating-amplifying integrated fiber laser configuration[J]. Optics Express, 2024, 32(11): 20035-20049. doi: 10.1364/OE.523781
    [51] 王小林, 文榆钧, 张汉伟, 等. 变纤芯直径掺镱光纤激光器: 现状与趋势[J]. 中国激光, 2022, 49: 2100001 doi: 10.3788/CJL202249.2100001

    Wang Xiaolin, Wen Yujun, Zhang Hanwei, et al. Ytterbium-doped core-diameter-variable fiber laser: current situation and develop tendency[J]. Chinese Journal of Lasers, 2022, 49: 2100001 doi: 10.3788/CJL202249.2100001
    [52] 奚小明, 曾令筏, 张汉伟, 等. 5 kW振荡放大一体化高可靠性光纤激光器[J]. 强激光与粒子束, 2021, 33: 071001

    Xi Xiaoming, Zeng Lingfa, Zhang Hanwei, et al. 5 kW oscillating-amplifying integrated fiber laser with high reliability[J]. High Power Laser and Particle Beams, 2021, 33: 071001
    [53] Silva A, Boller K J, Lindsay I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511
    [54] Xiao Hu, Zhou Pu, Wang Xiaolin, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090. doi: 10.1109/LPT.2012.2194780
    [55] Limpert J, Roser F, Schreiber T, et al. High-power ultrafast fiber laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 233-244. doi: 10.1109/JSTQE.2006.872729
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-12-28
  • 录用日期:  2025-12-04
  • 网络出版日期:  2026-01-17

目录

    /

    返回文章
    返回