Numerical simulation and experimental study on the thermal ablation behavior of plain-woven CFRP in a vacuum environment
-
摘要: 以激光作为加载热源,结合数值模拟与实验方法,研究了平纹编织碳纤维增强树脂复合材料在真空环境下的热烧蚀行为。建立了编织复合材料的细观热烧蚀理论模型,基于纤维纱线-基体双相建模策略,并结合有限元热分析模块与自定义子程序,实现了纤维与基体热导率的非线性演化及烧蚀形貌的动态模拟。基于红外与热电偶测温系统,设计实验并获得了材料辐照面的瞬态温度场、背面温升曲线以及烧蚀前后表面反射率的光谱变化。结果表明,真空环境下复合材料未出现起火现象,环氧树脂基体发生明显热分解与质量损失,而碳纤维形貌保持相对稳定。数值模拟结果与实验数据吻合良好,表明所建立的模型能够表征真空环境下材料的烧蚀温度场与形貌演变规律,可为复合材料在极端环境下的热安全评估和优化设计提供参考。Abstract:
Background As an advanced composite material widely used in the aerospace field, carbon fiber reinforced polymer (CFRP) is subjected to extreme service environments characterized by high heat flux and high mechanical loads. Its thermal ablation and high-temperature failure processes are significantly influenced by environmental conditions. Although numerical and experimental studies on the ablation behavior of CFRP have been extensively conducted, systematic experimental research and experimental-simulation comparisons for the ablation behavior of plain-woven CFRP under vacuum environment remain lacking.Purpose This study aims to conduct laser ablation experiments on plain-woven CFRP in a vacuum environment and to establish corresponding theoretical and numerical models of thermal ablation. The work seeks to reveal the internal heat transfer characteristics and the evolution mechanism of ablation damage, thereby providing theoretical and data support for the design and application of composite materials under vacuum or rarefied gas environments.Methods Experimentally, laser was used as the heat source to design and perform thermal ablation tests on plain-woven CFRP under vacuum. An experimental system based on infrared and thermocouple temperature measurements was employed to record the transient temperature field on the irradiated surface and the temperature of the back surface. In terms of simulation, based on a fiber-yarn/matrix dual-phase micro-modeling strategy and combined with a finite element thermal analysis module and user-defined subroutines, a theoretical and numerical model for the thermal ablation of woven composites was developed.Results Experimental results show that no open flame combustion occurred in the composite under vacuum. The epoxy resin matrix underwent significant thermal decomposition and mass loss, while the morphology and structure of the carbon fibers remained intact. The established numerical model relatively accurately simulated the ablation temperature field and ablation morphology, achieving the simulation of the dynamic ablation process including resin decomposition and fiber exposure.Conclusions The vacuum environment significantly alters the laser ablation characteristics and final morphology of plain-woven CFRP. Due to the higher energy deposition rate of the laser in the material, a more pronounced heat accumulation effect is induced. The numerical simulation results agree well with the experimental data, verifying the reliability of the model. This study provides an effective analytical tool and theoretical basis for the thermal safety assessment and functional design of woven CFRP in extreme service environments.-
Key words:
- CFRP /
- plain-woven /
- ablation /
- temperature field /
- vacuum
-
表 1 复合材料热物性参数
Table 1. Thermal and physical properties of composites
Parameters Value Units Fiber thermal conductivity kf 30 W/m/K Resin thermal conductivity kb 0.3 W/m/K Char thermal conductivity kp 5 W/m/K Pyrolysis gas thermal conductivity kg 0.025 W/m/K Fiber specific heat capacity cf 956 J/kg/K Resin specific heat capacity cb 1690 J/kg/K Char specific heat capacity cp 1589 J/kg/K Pyrolysis gas specific heat capacity cg 720 J/kg/K Pre-exponential factor J0 3.6e5 s−1 Activation energy for resin decomposition EA 6.48e4 J/mol Universal gas constant R 8.314 J/mol/K Reaction order n 3 / -
[1] Wang Peng, Zhang Zhen, Hao Bo, et al. Study on anisotropic heat transfer and thermal damage in nanosecond pulsed laser processing of CFRP[J]. Polymer Composites, 2023, 44(9): 5964-5983. doi: 10.1002/pc.27540 [2] 杨光猛, 万小朋, 侯赤. 纤维束波动效应对平纹编织复合材料损伤行为的影响[J]. 复合材料学报, 2020, 37(1): 132-139Yang Guangmeng, Wan Xiaopeng, Hou Chi. Damage behavior of plain woven composites considering undulation effect of fiber bundles[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 132-139 [3] 惠新育, 许英杰, 张卫红, 等. 平纹编织SiC/SiC复合材料多尺度建模及强度预测[J]. 复合材料学报, 2019, 36(10): 2380-2388Hui Xinyu, Xu Yingjie, Zhang Weihong, et al. Multi-scale modeling and strength prediction of plain woven SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2380-2388 [4] Wang Yang, Chen Zhaofeng, Yu Shengjie. Ablation behavior and mechanism analysis of C/SiC composites[J]. Journal of Materials Research and Technology, 2016, 5(2): 170-182. doi: 10.1016/j.jmrt.2015.10.004 [5] 王睿星, 王喆, 马特, 等. 高速气流对C/SiC复合材料激光烧蚀行为影响的实验研究[J]. 强激光与粒子束, 2023, 35: 051002 doi: 10.11884/HPLPB202335.220347Wang Ruixing, Wang Zhe, Ma Te, et al. Experimental study on the influences of high-speed airflow on the laser ablation behaviors of C/SiC composites[J]. High Power Laser and Particle Beams, 2023, 35: 051002 doi: 10.11884/HPLPB202335.220347 [6] 耿莉, 成溯, 付前刚, 等. 碳/碳复合材料的激光烧蚀行为与机制[J]. 复合材料学报, 2022, 39(9): 4337-4343 doi: 10.13801/j.cnki.fhclxb.20220825.002Geng Li, Cheng Su, Fu Qiangang, et al. Laser ablation behavior and mechanism of carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4337-4343 doi: 10.13801/j.cnki.fhclxb.20220825.002 [7] 张家雷, 王伟平, 李昭宁. 真空及大气下激光对复合材料的烧蚀试验对比[J]. 激光与红外, 2016, 46(11): 1334-1339 doi: 10.3969/j.issn.1001-5078.2016.11.007Zhang Jialei, Wang Weiping, Li Zhaoning. Laser ablation experiments of composites in vacuum and atmospheric environment[J]. Laser & Infrared, 2016, 46(11): 1334-1339 doi: 10.3969/j.issn.1001-5078.2016.11.007 [8] 贺敏波, 马志亮, 韦成华, 等. 热解对碳纤维/环氧复合材料激光烧蚀的影响[J]. 红外与激光工程, 2016, 45: 0306001 doi: 10.3788/IRLA201645.0306001He Minbo, Ma Zhiliang, Wei Chenghua, et al. Influence of pyrolysis on the laser ablation of carbon-fiber/epoxy composite[J]. Infrared and Laser Engineering, 2016, 45: 0306001 doi: 10.3788/IRLA201645.0306001 [9] 侯鹏飞, 赵璧, 胡胜利, 等. 酚醛树脂浸渍石英纤维复合材料烧蚀过程数值模拟[J]. 复合材料学报, 2025, 42(3): 1678-1688 doi: 10.13801/j.cnki.fhclxb.20240513.002Hou Pengfei, Zhao Bi, Hu Shengli, et al. Numerical simulation of the ablation process in phenolic resin impregnated quartz fiber composites[J]. Acta Materiae Compositae Sinica, 2025, 42(3): 1678-1688 doi: 10.13801/j.cnki.fhclxb.20240513.002 [10] 卓越洋, 贺子安, 刘涛, 等. 碳纤维/环氧树脂编织结构激光辐照热传导效应仿真研究[J]. 光学学报, 2024, 44: 1114002 doi: 10.3788/AOS240531Zhuo Yueyang, He Zian, Liu Tao, et al. Thermal conduction effect simulation of laser irradiation on woven carbon fiber/epoxy resin structures[J]. Acta Optica Sinica, 2024, 44: 1114002 doi: 10.3788/AOS240531 [11] 王一帆, 王秋雨, 曹涛锋, 等. 高温下平纹编织碳/酚醛复合材料等效热导率的理论预测及分析[J]. 固体火箭技术, 2024, 47(5): 667-674Wang Yifan, Wang Qiuyu, Cao Taofeng, et al. Theoretical prediction and analysis of equivalent thermal conductivity of plain-woven carbon/phenolic composites at high temperatures[J]. Journal of Solid Rocket Technology, 2024, 47(5): 667-674 [12] Zhou Lichuan, Sun Xiaohao, Chen Mingwei, et al. Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites[J]. Composite Structures, 2019, 215: 278-288. doi: 10.1016/j.compstruct.2019.02.053 [13] 张家雷, 王伟平, 刘仓理. 激光辐照下二维编织碳纤维/环氧树脂复合材料的烧蚀特征[J]. 复合材料学报, 2017, 34(3): 494-500 doi: 10.13801/j.cnki.fhclxb.20160606.003Zhang Jialei, Wang Weiping, Liu Cangli. Ablation characteristics of 2D braided carbon fiber/epoxy composites under laser irradiation[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 494-500 doi: 10.13801/j.cnki.fhclxb.20160606.003 [14] 赵伟娜, 黄亿辉, 宋宏伟, 等. 高功率连续激光辐照CFRP层合板热力破坏效应多尺度分析模型[J]. 中国激光, 2017, 44: 0602003 doi: 10.3788/CJL201744.0602003Zhao Weina, Huang Yihui, Song Hongwei, et al. Multi-scale analysis model of thermal-mechanical damage effect in high-power continuous-wave laser irradiation of CFRP laminates[J]. Chinese Journal of Lasers, 2017, 44: 0602003 doi: 10.3788/CJL201744.0602003 [15] 张永强, 张黎, 陶彦辉. 切向气流和激光作用下碳纤维/环氧材料的损伤特性[J]. 强激光与粒子束, 2015, 27: 071014 doi: 10.11884/HPLPB201527.071014Zhang Yongqiang, Zhang Li, Tao Yanhui. Damage characterization of carbon fiber/epoxy composite under laser irradiation and tangential flow[J]. High Power Laser and Particle Beams, 2015, 27: 071014 doi: 10.11884/HPLPB201527.071014 [16] 孔国强, 安振河, 魏化震, 等. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119Kong Guoqiang, An Zhenhe, Wei Huazhen, et al. Effect of carbon fiber tow structure on ablative properties of carbon fiber/phenolic composites[J]. Journal of Materials Engineering, 2022, 50(9): 113-119 [17] Dimitrienko Y I. Thermomechanics of composite structures under high temperatures[M]. Dordrecht: Springer, 2016. [18] Pilling M W, Yates B, Black M A, et al. The thermal conductivity of carbon fibre-reinforced composites[J]. Journal of Materials Science, 1979, 14(6): 1326-1338. doi: 10.1007/BF00549304 -
下载: