留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excited state reaction kinetics regression based on sequence-to-sequence learning

Bai Tianzi Huai Ying Liu Tingting Jia Shuqin Duo Liping

白天滋, 怀英, 刘婷婷, 等. 基于序列学习的激发态反应动力学回归[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250298
引用本文: 白天滋, 怀英, 刘婷婷, 等. 基于序列学习的激发态反应动力学回归[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250298
Bai Tianzi, Huai Ying, Liu Tingting, et al. Excited state reaction kinetics regression based on sequence-to-sequence learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250298
Citation: Bai Tianzi, Huai Ying, Liu Tingting, et al. Excited state reaction kinetics regression based on sequence-to-sequence learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250298

基于序列学习的激发态反应动力学回归

doi: 10.11884/HPLPB202638.250298
详细信息
  • 中图分类号: TN248.5

Excited state reaction kinetics regression based on sequence-to-sequence learning

Funds: supported by National Key R&D Program of China(No. 2024YFB4006600); Research Foundation (232-CXCY-A01-09-05-01); Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0970204)
More Information
  • 摘要: 激光器中的反应动力学常包含大量激发态物种。激发态物种之间的相互作用与由此导致的数值刚性是激光器数值模拟的一大挑战。通过神经网络建立激发态反应动力学关系回归可有效降低计算复杂度,为更加准确精细的激光器数值模拟提供可能。但激发态反应动力学的复杂性同样要求神经网络具有较强的回归性能。本研究引入了序列神经网络来在较低参数量的前提下提升网络复杂回归的能力,同时提出了统计网络框架来进一步增加网络输出的多样性。所提出的方法在包含16个物种和137个反应的氟化氢振动态反应机理中进行了验证。在验证过程中,同时发现了随机性对网络性能的影响。
  • Figure  1.  The structure of proposed neural network

    Figure  2.  The training losses for different neural networks

    Figure  3.  The mean square relative errors on test data of different neural networks

    Figure  4.  The relative errors on random sampling data of different neural networks

    Figure  5.  The relative errors of neural networks with different constant in regularization

    Figure  6.  The mean square relative errors on test data of neural networks trained with another random seed

    Figure  7.  The relative errors on random sampling data of neural networks trained with another random seed

    Figure  8.  The relative errors of different constant regularized neural networks trained with another random seed

    Table  1.   The ranges of flow states as the neural network’s inputs

    name T / K P / pa $ {Y}_{{{\mathrm{H}}_{2}}} $ $ {Y}_{{{\mathrm{H}}_{2}}\left(1\right)} $ $ {Y}_{\mathrm{H}} $ $ {Y}_{{{\mathrm{F}}_{2}}} $ $ {Y}_{\mathrm{F}} $ $ {Y}_{\text{DF}} $ $ {Y}_{\text{HF}\left(0\right)} $
    lower limit $ 3.0\times {10}^{1} $ $ 1.0\times {10}^{2} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $
    upper limit $ 1.0\times {10}^{3} $ $ 3.5\times {10}^{3} $ $ 5.0\times {10}^{-1} $ $ 5.0\times {10}^{-3} $ $ 1.2\times {10}^{-2} $ $ 3.0\times {10}^{-3} $ $ 3.0\times {10}^{-1} $ $ 5.0\times {10}^{-1} $ $ 2.0\times {10}^{-1} $
    name $ {Y}_{\text{HF}\left(1\right)} $ $ {Y}_{\text{HF}\left(2\right)} $ $ {Y}_{\text{HF}\left(3\right)} $ $ {Y}_{\text{HF}\left(4\right)} $ $ {Y}_{\text{HF}\left(5\right)} $ $ {Y}_{\text{HF}\left(6\right)} $ $ {Y}_{\text{HF}\left(7\right)} $ $ {Y}_{\text{He}} $ $ {Y}_{{{\mathrm{N}}_{2}}} $
    lower limit $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $ $ 0.0\times {10}^{0} $
    upper limit $ 7.5\times {10}^{-2} $ $ 1.5\times {10}^{-1} $ $ 4.0\times {10}^{-2} $ $ 3.0\times {10}^{-4} $ $ 2.0\times {10}^{-4} $ $ 1.5\times {10}^{-4} $ $ 1.0\times {10}^{-4} $ $ 9.0\times {10}^{-1} $ $ 2.0\times {10}^{-1} $
    下载: 导出CSV

    Table  2.   The configurations of different neural networks

    namestructurelosstotal parameters
    SeqSerial decodersMAE57631
    SeqStdSerial decodersMAE+C57631
    WideParallel decodersMAE467167
    WideStdParallel decodersMAE+C467167
    下载: 导出CSV
  • [1] Waichman K, Barmashenko B D, Rosenwaks S. Comparing modeling and measurements of the output power in chemical oxygen-iodine lasers: a stringent test of I2 dissociation mechanisms[J]. The Journal of Chemical Physics, 2010, 133: 084301. doi: 10.1063/1.3480397
    [2] Li Hui, Zhao Tianliang, Li Jiaxu, et al. State-to-state chemical kinetic mechanism for HF chemical lasers[J]. Combustion Theory and Modelling, 2020, 24(1): 129-141. doi: 10.1080/13647830.2019.1662490
    [3] D’Alessio G, Sundaresan S, Mueller M E. Automated and efficient local adaptive regression for principal component-based reduced-order modeling of turbulent reacting flows[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5249-5258. doi: 10.1016/j.proci.2022.07.235
    [4] Kochkov D, Smith J A, Alieva A, et al. Machine learning–accelerated computational fluid dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2101784118.
    [5] Ding Tianjie, Readshaw T, Rigopoulos S, et al. Machine learning tabulation of thermochemistry in turbulent combustion: an approach based on hybrid flamelet/random data and multiple multilayer perceptrons[J]. Combustion and Flame, 2021, 231: 111493. doi: 10.1016/j.combustflame.2021.111493
    [6] Ortega A G, Shirin A. Neural network-based descent control for Landers with sloshing and mass variation: a cascade and adaptive PID strategy[J]. Aerospace, 2024, 11: 1009. doi: 10.3390/aerospace11121009
    [7] Zhang Shihong, Zhang Chi, Wang Bosen. CRK-PINN: a physics-informed neural network for solving combustion reaction kinetics ordinary differential equations[J]. Combustion and Flame, 2024, 269: 113647. doi: 10.1016/j.combustflame.2024.113647
    [8] Hughes G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63. doi: 10.1109/TIT.1968.1054102
    [9] Han Peilun, Shen Xiaoqian, Shen Boxiong. A simulation study on NOx reduction efficiency in SCR catalysts utilizing a modern C3-CNN algorithm[J]. Fuel, 2024, 363: 130985. doi: 10.1016/j.fuel.2024.130985
    [10] Ihme M, Chung W T, Mishra A A. Combustion machine learning: principles, progress and prospects[J]. Progress in Energy and Combustion Science, 2022, 91: 101010. doi: 10.1016/j.pecs.2022.101010
    [11] Shin J, Hansinger M, Pfitzner M, et al. A priori analysis on deep learning of filtered reaction rate[J]. Flow, Turbulence and Combustion, 2022, 109(2): 383-409. doi: 10.1007/s10494-022-00330-0
    [12] Zhang Tianhan, Yi Yuxiao, Xu Yifan, et al. A multi-scale sampling method for accurate and robust deep neural network to predict combustion chemical kinetics[J]. Combustion and Flame, 2022, 245: 112319. doi: 10.1016/j.combustflame.2022.112319
    [13] Bai Tianzi, Huai Ying, Liu Tingting, et al. Acceleration of the complex reacting flow simulation with a generalizable neural network based on meta-learning[J]. Fuel, 2024, 372: 132173. doi: 10.1016/j.fuel.2024.132173
    [14] Kretzschmar R, Karayiannis N B, Eggimann F. Feedforward neural network models for handling class overlap and class imbalance[J]. International Journal of Neural Systems, 2005, 15(5): 323-338. doi: 10.1142/S012906570500030X
    [15] Baskerville N P, Granziol D, Keating J P. Appearance of Random Matrix Theory in deep learning[J]. Physica A: Statistical Mechanics and its Applications, 2022, 590: 126742. doi: 10.1016/j.physa.2021.126742
    [16] Zhang Yu, Du Wenli. Intelligent time-scale operator-splitting integration for chemical reaction systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3366-3376. doi: 10.1109/TNNLS.2020.3006348
    [17] Marcato A, Santos J E, Boccardo G, et al. Prediction of local concentration fields in porous media with chemical reaction using a multi scale convolutional neural network[J]. Chemical Engineering Journal, 2023, 455: 140367. doi: 10.1016/j.cej.2022.140367
    [18] Sun Jie, Wang Yiqing, Tian Baolin, et al. DetonationFoam: an open-source solver for simulation of gaseous detonation based on OpenFOAM[J]. Computer Physics Communications, 2023, 292: 108859. doi: 10.1016/j.cpc.2023.108859
    [19] Salunkhe A, Deighan D, DesJardin P E, et al. Physics informed machine learning for chemistry tabulation[J]. Journal of Computational Science, 2023, 69: 102001. doi: 10.1016/j.jocs.2023.102001
    [20] Xu Kailai, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations[J]. Journal of Computational Physics, 2022, 453: 110938. doi: 10.1016/j.jcp.2021.110938
    [21] Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014: 3104-3112.
    [22] Liu Bowen, Ramsundar B, Kawthekar P, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models[J]. ACS Central Science, 2017, 3(10): 1103-1113. doi: 10.1021/acscentsci.7b00303
    [23] Manke II G C, Hager G D. A review of recent experiments and calculations relevant to the kinetics of the HF laser[J]. Journal of Physical and Chemical Reference Data, 2001, 30(3): 713-733. doi: 10.2514/6.2002-2219
    [24] Abadi M, Barham P, Chen Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. 2016: 265-283.
    [25] Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[R]. Version 2.2. 0, 2015.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-12-16
  • 录用日期:  2025-12-17
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回