留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星光-Ⅲ激光装置X射线在线瞄准针孔相机研制

杨雷 黄征 孙立 卢峰 陈勇 李纲 周凯南

杨雷, 黄征, 孙立, 等. 星光-Ⅲ激光装置X射线在线瞄准针孔相机研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250303
引用本文: 杨雷, 黄征, 孙立, 等. 星光-Ⅲ激光装置X射线在线瞄准针孔相机研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250303
Yang Lei, Huang Zheng, Sun Li, et al. Development of an X-ray online-aiming pinhole camera for the Xingguang-III laser facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250303
Citation: Yang Lei, Huang Zheng, Sun Li, et al. Development of an X-ray online-aiming pinhole camera for the Xingguang-III laser facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250303

星光-Ⅲ激光装置X射线在线瞄准针孔相机研制

doi: 10.11884/HPLPB202638.250303
基金项目: 等离子体物理全国重点实验室基金项目(No.6142A04240302)
详细信息
    作者简介:

    杨 雷,yl9181@sina.com

    通讯作者:

    卢 峰,iufeng268@163.com

  • 中图分类号: O437.4

Development of an X-ray online-aiming pinhole camera for the Xingguang-III laser facility

  • 摘要: 基于针孔成像原理的针孔相机结构简单、使用方便,在高能量密度物理实验中常用于监测激光与靶相互作用区域的形状与大小。为适应星光-Ⅲ激光装置的靶室结构与打靶方式,本研究研制了一种用于该装置的X射线在线瞄准针孔相机,以解决传统针孔相机无法在线瞄准导致的信号采集失败问题。相机采用可见光CCD与X光CCD一体化设计,通过优化调节结构,实现了俯仰与侧摆方向的高精度在线指向调节,调节精度达15 μm。利用可见光CCD实时采集靶面图像,并结合精密调节盘上的不同孔径瞄准孔,实现了X光针孔相机的高精度在线瞄准。在星光-Ⅲ激光装置上对该相机进行了激光打靶考核,实验结果表明,其性能满足该装置的使用要求。
  • 图  1  在线瞄准针孔相机原理示意图

    Figure  1.  Schematic diagram of the principle of online aiming pinhole camera

    图  2  在线瞄准针孔相机结构

    Figure  2.  Online aiming pinhole camera structure

    图  3  左轮针孔调节装置

    Figure  3.  Revolver-type pinhole adjustment device

    图  4  瞄准性能测试验证

    Figure  4.  Verification of aiming performance test

    图  5  瞄准性能测试结果

    Figure  5.  Aiming performance test results

    图  6  针孔相机的实验结果

    Figure  6.  Experimental results of the pinhole camera

  • [1] Dong Kegong, Zhang Tiankui, Yu Minghai, et al. Micro-spot gamma-ray generation based on laser Wakefield acceleration[J]. Journal of Applied Physics, 2018, 123: 243301. doi: 10.1063/1.4997142
    [2] Wu Y C, Zhu B, Li G, et al. Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source[J]. Scientific Reports, 2018, 8: 15888. doi: 10.1038/s41598-018-33844-7
    [3] Emma C, Van Tilborg J, Assmann R, et al. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 2021, 9: e57. doi: 10.1017/hpl.2021.39
    [4] 张高维, 矫金龙, 齐伟, 等. 拍瓦激光与铜靶作用产生光核中子的数值模拟研究[J]. 强激光与粒子束, 2016, 28: 102002 doi: 10.11884/HPLPB201628.160102

    Zhang Gaowei, Jiao Jinlong, Qi Wei, et al. Numerical simulation study of photonuclear neutron generation by PW laser[J]. High Power Laser and Particle Beams, 2016, 28: 102002 doi: 10.11884/HPLPB201628.160102
    [5] 仲佳勇, 安维明, 平永利, 等. 强激光实验室天体物理介绍[J]. 强激光与粒子束, 2020, 32: 092003 doi: 10.11884/HPLPB202032.200123

    Zhong Jiayong, An Weiming, Ping Yongli, et al. Introduction of laboratory astrophysics with intense lasers[J]. High Power Laser and Particle Beams, 2020, 32: 092003 doi: 10.11884/HPLPB202032.200123
    [6] Danson N C, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: 03000e54. doi: 10.1017/hpl.2014.52
    [7] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9
    [8] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635.
    [9] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [10] An H H, Wang W, Xiong J, et al. Accelerated protons with energies up to 70 MeV based on the optimized SG-II Peta-watt laser facility[J]. High Power Laser Science and Engineering, 2023, 11: e63. doi: 10.1017/hpl.2023.54
    [11] Sueoka K, Kataoka J, Takabe M, et al. Development of a new pinhole camera for imaging in high dose-rate environments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912: 115-118. doi: 10.1016/j.nima.2017.10.082
    [12] Finocchiaro G, Naselli E, Mishra B, et al. Space-resolved electron density and temperature evaluation by x-ray pinhole camera method in an ECR plasma[J]. Physics of Plasmas, 2024, 31: 062506. doi: 10.1063/5.0207185
    [13] Stoeckl C, Cao D, Ceurvorst L, et al. Beam-pointing verification using x-ray pinhole cameras on the 60-beam OMEGA laser[J]. Review of Scientific Instruments, 2022, 93: 103524. doi: 10.1063/5.0098941
    [14] 侯立飞, 韦敏习, 袁永腾, 等. 神光Ⅱ升级装置X光针孔相机研制[J]. 强激光与粒子束, 2013, 25(9): 2313-2316 doi: 10.3788/HPLPB20132509.2313

    Hou Lifei, Wei Minxi, Yuan Yongteng, et al. Development of X-ray pinhole camera on Shengguang II-up equipment[J]. High Power Laser and Particle Beams, 2013, 25(9): 2313-2316 doi: 10.3788/HPLPB20132509.2313
    [15] 董建军, 刘慎业, 杨国洪, 等. 实时测量的X射线针孔相机信号强度估算[J]. 强激光与粒子束, 2009, 21(9): 1347-1350

    Dong Jianjun, Liu Shenye, Yang Guohong, et al. Estimation of signal intensity for online measurement X-ray pinhole camera[J]. High Power Laser and Particle Beams, 2009, 21(9): 1347-1350
    [16] Wang C, An H H, Xiong J, et al. A pinhole camera for ultrahigh-intensity laser plasma experiments[J]. Review of Scientific Instruments, 2017, 88: 113501. doi: 10.1063/1.5009189
    [17] 江少恩, 于燕宁. 用于神光II激光装置的X光针孔相机[J]. 科学技术与工程, 2005, 5(22): 1713-1716

    Jiang Shaoen, Yu Yanning. X-ray pinhole camera used on Shenguang II facility[J]. Science Technology and Engineering, 2005, 5(22): 1713-1716
  • 加载中
图(6)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-19
  • 修回日期:  2026-01-22
  • 录用日期:  2025-12-30
  • 网络出版日期:  2026-02-12

目录

    /

    返回文章
    返回