留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向小尺寸靶丸的冲击波加载对称性原位表征技术

理玉龙 关赞洋 刘祥明 杨为明 徐涛 彭晓世 王峰

理玉龙, 关赞洋, 刘祥明, 等. 面向小尺寸靶丸的冲击波加载对称性原位表征技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250325
引用本文: 理玉龙, 关赞洋, 刘祥明, 等. 面向小尺寸靶丸的冲击波加载对称性原位表征技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250325
Li Yulong, Guan Zanyang, Liu xiangming, et al. In-situ characterization technology for shock wave loading symmetry of small-sized target[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250325
Citation: Li Yulong, Guan Zanyang, Liu xiangming, et al. In-situ characterization technology for shock wave loading symmetry of small-sized target[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250325

面向小尺寸靶丸的冲击波加载对称性原位表征技术

doi: 10.11884/HPLPB202638.250325
基金项目: 国家重点实验室自主科研项目(JCKYS2024212804),国家自然科学基金委重大仪器项目(12127810)
详细信息
    作者简介:

    理玉龙,lylong_work@sina.com

    通讯作者:

    王 峰,lfrc_wangfeng@163.com

  • 中图分类号: O436.1;TP391

In-situ characterization technology for shock wave loading symmetry of small-sized target

  • 摘要: 双轴VISAR诊断技术能够同时诊断靶丸不同区域的冲击波速度历程,对内爆冲击波加载过程的含时不对称性进行原位表征,是惯性约束聚变实验研究中的重要诊断技术。神光十万焦耳装置综合内爆实验通常采用直径约为850 µm的靶丸,更小的靶丸尺寸为双轴VISAR诊断技术建立带来更高的挑战。面向十万焦耳激光装置所使用的小尺寸靶丸开展双轴诊断技术研究,建立了成像仿真模型,基于该模型对三类典型的影响因素进行细致分析并指导靶丸设计。结合模拟分析及优化设计结果,基于小靶丸腔靶结构建立了双轴VISAR诊断技术,并诊断获得赤道及极区的冲击波速度历程,完成不同驱动方式下的冲击波加载对称性对比。通过本文研究,基于模拟仿真及优化设计解决了双轴VISAR诊断技术难题,通过实验对冲击波加载对称性原位表征技术进行了验证,为后续腔型结构及驱动波形优化设计奠定了诊断基础。
  • 图  1  Keyhole靶结构示意图

    Figure  1.  Schematic diagram of the keyhole target structure

    图  2  双轴VISAR诊断原理示意图

    Figure  2.  Schematic diagram of the dual-axis VISAR diagnostic principle

    图  3  大靶丸及小靶丸结构下双轴VISAR诊断图像模拟结果

    Figure  3.  Simulation results of dual-axis VISAR under the structures of large target and small target

    图  4  双轴VISAR成像光路仿真模型

    Figure  4.  Simulation model of dual-axis VISAR imaging optical path

    图  5  制靶过程中可能存在的偏离因素示意图

    Figure  5.  Schematic diagram of possible deviation factors during target fabrication

    图  6  三种偏离情况模拟仿真结果

    Figure  6.  Simulation results of three deviation cases

    图  7  各装配情形下,极区信号横向尺寸仿真结果

    Figure  7.  Simulation results of the dimensions of polar signals

    图  8  双轴VISAR诊断图像及冲击波速度历程

    Figure  8.  Dual-axis VISAR diagnostic images and shock wave velocity history

  • [1] Moses E I, Wuest C R. The national ignition facility: laser performance and first experiments[J]. Fusion Science and Technology, 2005, 47(3): 314-322. doi: 10.13182/FST47-314
    [2] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [3] 董云松, 李欣, 杨家敏, 等. 首次全束组六通柱腔内爆物理实验[J]. 强激光与粒子束, 2018, 30: 110101 doi: 10.11884/HPLPB201830.180248

    Dong Yunsong, Li Xin, Yang Jiamin, et al. First full-beam implosion experiment of six-port-cylindrical hohlraum[J]. High Power Laser and Particle Beams, 2018, 30: 110101 doi: 10.11884/HPLPB201830.180248
    [4] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [5] 勇珩, 戴振生, 宋鹏, 等. 点火内爆靶辐射驱动不对称性全过程数值模拟[J]. 强激光与粒子束, 2015, 27: 092001 doi: 10.11884/HPLPB201527.092001

    Yong Heng, Dai Zhensheng, Song Peng, et al. Numerical simulation of whole implosion process with multi-layer ignition capsule driven by asymmetric radiation source[J]. High Power Laser and Particle Beams, 2015, 27: 092001 doi: 10.11884/HPLPB201527.092001
    [6] 黎航, 蒲昱东, 景龙飞, 等. 间接驱动的内爆不对称性随腔长和时间变化的研究[J]. 物理学报, 2013, 62: 225204 doi: 10.7498/aps.62.225204

    Li Hang, Pu Yudong, Jing Longfei, et al. Variations of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion[J]. Acta Physica Sinica, 2013, 62: 225204 doi: 10.7498/aps.62.225204
    [7] 黄天晅, 吴畅书, 陈忠靖, 等. 在间接驱动内爆实验中采用花生腔增强对称性调控[J]. 物理学报, 2023, 72: 025201 doi: 10.7498/aps.72.20220861

    Huang Tianxuan, Wu Changshu, Chen Zhongjing, et al. Improving symmetry tuning with I-raum in indirect-driven implosions[J]. Acta Physica Sinica, 2023, 72: 025201 doi: 10.7498/aps.72.20220861
    [8] Delamater N D, Magelssen G R, Hauer A A. Reemission technique for symmetry measurements in Hohlraum targets containing a centered high-Z ball[J]. Physical Review E, 1996, 53(5): 5240-5248. doi: 10.1103/PhysRevE.53.5240
    [9] Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
    [10] Hicks D G, Meezan N B, Dewald E L, et al. Implosion dynamics measurements at the National Ignition Facility[J]. Physics of Plasmas, 2012, 19: 122702. doi: 10.1063/1.4769268
    [11] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [12] 王哲斌, 段晓溪, 张琛, 等. 万焦耳激光装置上多热力学路径高压加载技术实验研究[J]. 强激光与粒子束, 2020, 32: 092008 doi: 10.11884/HPLPB202032.200139

    Wang Zhebin, Duan Xiaoxi, Zhang Chen, et al. Experimental research on high-pressure loading technology of multiple thermodynamic paths on 10 kJ-level laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 092008 doi: 10.11884/HPLPB202032.200139
    [13] Wang Peng, Zhang Chen, Jiang Shaoen, et al. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6: 035902. doi: 10.1063/5.0039062
    [14] Zhang Shaoen, Yang Yutong, Yang Weimin, et al. Equation of state for boron nitride along the principal Hugoniot to 16 Mbar[J]. Matter and Radiation at Extremes, 2024, 9: 057403. doi: 10.1063/5.0206889
    [15] Robey H F, Boehly T R, Celliers P M, et al. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation[J]. Physics of Plasmas, 2012, 19: 042706. doi: 10.1063/1.3694122
    [16] Kritcher A L, Zylstra A B, Callahan D A, et al. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E[J]. Physics of Plasmas, 2021, 28: 072706. doi: 10.1063/5.0047841
    [17] Pu Yudong, Huang Tianxuan, Ge Fengjun, et al. First integrated implosion experiments on the SG-III laser facility[J]. Plasma Physics and Controlled Fusion, 2018, 60: 085017. doi: 10.1088/1361-6587/aacc9e
    [18] Wang Feng, Jiang Shaoen, Ding Yongkun, et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5: 035201. doi: 10.1063/1.5129726
  • 加载中
图(8)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-12
  • 修回日期:  2025-12-30
  • 录用日期:  2025-12-19
  • 网络出版日期:  2026-01-10

目录

    /

    返回文章
    返回