留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多路峰值保持电路的纳秒级大光斑测量系统

李国超 舒俊 刘克富 赵晖 邱剑

李国超, 舒俊, 刘克富, 等. 基于多路峰值保持电路的纳秒级大光斑测量系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250330
引用本文: 李国超, 舒俊, 刘克富, 等. 基于多路峰值保持电路的纳秒级大光斑测量系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250330
Li Guochao, Shu Jun, Liu Kefu, et al. A nanosecond large-spot laser measurement system based on a multi-channel peak-hold circuit[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250330
Citation: Li Guochao, Shu Jun, Liu Kefu, et al. A nanosecond large-spot laser measurement system based on a multi-channel peak-hold circuit[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250330

基于多路峰值保持电路的纳秒级大光斑测量系统

doi: 10.11884/HPLPB202638.250330
基金项目: 复旦-长光合作基金项目(FC2017-002)
详细信息
    作者简介:

    李国超,23210720099@m.fudan.edu.cn

    通讯作者:

    邱 剑,jqiu@fudan.edu.cn

A nanosecond large-spot laser measurement system based on a multi-channel peak-hold circuit

  • 摘要: 针对大光斑、窄脉冲激光在测量中因光路整形畸变、瞬态难捕获及相干性要求等限制导致的幅值失真与采样困难问题,提出了一种面向纳秒级脉冲大光斑面型激光的光束质量测量系统。系统采用三维步进平台联合光电探测器实现光斑强度的空间重建,并设计多通道峰值保持电路以锁存脉冲峰值,确保幅度采集的瞬态准确性。为应对部分光斑截断及边界不完整等非理想条件,系统引入圆拟合方法作为对能量二阶矩计算的补充,增强了光斑尺寸评估的鲁棒性。实验选用垂直腔面发射激光器作为典型光源,开展轴向扫描测量,比较不同方法下光斑尺度与能量分布的一致性。结果表明,该系统在纳秒激光脉冲与大尺寸光斑条件下具备良好的测量稳定性与适应能力,能够为光束几何特性和能量结构的多维评估提供有效支撑。
  • 图  1  激光光束质量测量系统。

    Figure  1.  Laser Beam Quality Measurement System

    图  2  跨导峰值保持电路

    Figure  2.  Transconductance peak-hold circuit

    图  3  多路并行峰值保持电路

    Figure  3.  The multi-channel parallel peak-hold circuit

    图  4  多通道峰值保持电路实验

    Figure  4.  multi-channel peak-hold circuit experiment

    图  5  不同z位置下激光光斑的尺寸

    Figure  5.  The size of the laser spot emitted at different z positions

    图  6  激光光斑尺寸随位置变化关系

    Figure  6.  Laser spot size versus position

  • [1] Pan Guanzhong, Xun Meng, Zhou Xiaoli, et al. Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems[J]. Light: Science & Applications, 2024, 13: 229.
    [2] Zhang Cheng, Li Huijie, Liang Dong. Antireflective vertical-cavity surface-emitting laser for LiDAR[J]. Nature Communications, 2024, 15: 1105. doi: 10.1038/s41467-024-44754-w
    [3] Li Nanxi, Ho C P, Xue Jin, et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors[J]. Laser & Photonics Reviews, 2022, 16: 2100511.
    [4] 陈良惠, 杨国文, 刘育衔, 等. 半导体激光器研究进展[J]. 中国激光, 2020, 47: 0500001 doi: 10.19650/j.cnki.cjsi.J2311791

    Chen Lianghui, Yang Guowen, Liu Yuxian, et al. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020, 47: 0500001 doi: 10.19650/j.cnki.cjsi.J2311791
    [5] Ali M A, Hu Chunshan, Yttri E A, et al. Recent advances in 3D printing of biomedical sensing devices[J]. Advanced Functional Materials, 2022, 32: 2107671. doi: 10.1002/adfm.202107671
    [6] Paul S, Staudinger P, Nuernberg J, et al. High-brightness semiconductor laser diodes for LIDAR application[C]//Proceedings of SPIE 13345, High-Power Diode Laser Technology XXIII. 2025: 133450L.
    [7] 高雪松, 高春清, 杨绍状, 等. 面阵CCD激光束参量测量系统及其实验研究[J]. 中国激光, 2005, 32(7): 993-996 doi: 10.3321/j.issn:0258-7025.2005.07.027

    Gao Xuesong, Gao Chunqing, Yang Shaozhuang, et al. Experimental study on beam parameter measurement system by using area array CCD[J]. Chinese Journal of Lasers, 2005, 32(7): 993-996 doi: 10.3321/j.issn:0258-7025.2005.07.027
    [8] Shi Shengbing, Chen Zhenxing, Lv Yao. Test technology on divergence angle of laser range finder based on CCD imaging fusion[C]//Proceedings of SPIE 9684, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment. 2016: 96840Y.
    [9] Wang Haiyan, Liu Cheng, He Xiaoliang, et al. Wavefront measurement techniques used in high power lasers[J]. High Power Laser Science and Engineering, 2014, 2: e25. doi: 10.1017/hpl.2014.28
    [10] 张震, 周孟莲, 张检民, 等. CCD中激光光斑的全饱和单侧拖尾现象[J]. 强激光与粒子束, 2013, 25(6): 1351-1353 doi: 10.3788/HPLPB20132506.1351

    Zhang Zhen, Zhou Menglian, Zhang Jianmin, et al. Entirely saturated unilateral smear of laser spot in CCD[J]. High Power Laser and Particle Beams, 2013, 25(6): 1351-1353 doi: 10.3788/HPLPB20132506.1351
    [11] Pang Miao, Rong Jian, Yuan Xuewen, et al. Research on the measurement method for a large laser beam profile based on CCD diffuse transmission imaging[J]. Measurement Science and Technology, 2013, 24: 125202. doi: 10.1088/0957-0233/24/12/125202
    [12] 冯国斌, 杨鹏翎, 王群书, 等. 强激光远场光斑强度分布测量技术[J]. 强激光与粒子束, 2013, 25(7): 1615-1619 doi: 10.3788/HPLPB20132507.1615

    Feng Guobin, Yang Pengling, Wang Qunshu, et al. Measuring technology for far-field beam profile of high power laser[J]. High Power Laser and Particle Beams, 2013, 25(7): 1615-1619 doi: 10.3788/HPLPB20132507.1615
    [13] Stoklasa B, Motka L, Rehacek J, et al. Wavefront sensing reveals optical coherence[J]. Nature Communications, 2014, 5: 3275. doi: 10.1038/ncomms4275
    [14] Li Zhi, Han Yaqi, Wu Lican, et al. Towards an ultrafast 3D imaging scanning LiDAR system: a review[J]. Photonics Research, 2024, 12: 1709. doi: 10.1364/PRJ.509710
    [15] Fellner G, Speckbacher L, Mousavi S M, et al. Nanosecond peak detect and hold circuit with adjustable dynamic range[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2005608. doi: 10.1109/tim.2023.3289555
    [16] Achtenberg K, Mikołajczyk J, Szabra D, et al. Review of peak signal detection methods in nanosecond pulses monitoring[J]. Metrology and Measurement Systems, 2020: 203-218.
    [17] Cao Changqing, Wang Xiang, Zeng Xiaodong, et al. The problem with beam quality for semiconductor laser[J]. Optik, 2016, 127(8): 3701-3702. doi: 10.1016/j.ijleo.2016.01.046
  • 加载中
图(6)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-09
  • 修回日期:  2026-01-27
  • 录用日期:  2026-01-08
  • 网络出版日期:  2026-02-10

目录

    /

    返回文章
    返回