留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性约束聚变中黑腔能量亏损问题研究进展

秦雪龙 赵航 李琦 潘凯强 刘耀远 李三伟 张璐 杨冬 龚韬 李志超

秦雪龙, 赵航, 李琦, 等. 惯性约束聚变中黑腔能量亏损问题研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250346
引用本文: 秦雪龙, 赵航, 李琦, 等. 惯性约束聚变中黑腔能量亏损问题研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250346
Qin Xuelong, Zhao Hang, Li Qi, et al. Research progress on hohlraum energy deficit in inertial confinement fusion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250346
Citation: Qin Xuelong, Zhao Hang, Li Qi, et al. Research progress on hohlraum energy deficit in inertial confinement fusion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250346

惯性约束聚变中黑腔能量亏损问题研究进展

doi: 10.11884/HPLPB202638.250346
基金项目: 国家自然科学基金项目(12105270,12205272,12205274,12275251,12305262); 等离子体物理国家重点实验室基金项目(6142A04230103)
详细信息
    作者简介:

    秦雪龙,qxl19@pku.edu.cn

    通讯作者:

    龚 韬,gongtao5@mail.ustc.edu.cn

    李志超,limatu@163.com

  • 中图分类号: O53

Research progress on hohlraum energy deficit in inertial confinement fusion

  • 摘要: 在间接驱动的激光惯性约束聚变中,对靶丸处X射线驱动强度的精确计算是精准预言氘氚燃料靶丸内爆性能的基础。这需要利用辐射流体模拟程序,对激光到X射线转换和腔壁X光吸收损失等过程进行精确模拟。然而,自美国国家点火装置(NIF)的点火攻关计划启动以来,辐射流体模拟程序预测的靶丸处X射线驱动强度持续高于实验测量值,即普遍存在的黑腔能量亏损现象。尽管NIF开展了大量实验研究并持续优化其辐射流体模拟模型,但这一挑战性的黑腔能量亏损问题至今未能得到彻底解决,成为实现高增益惯性约束聚变的关键障碍之一。本文将系统介绍NIF黑腔能量亏损问题上的关键研究进展,并对NIF与我国在靶丸处辐射流强度表征的方法展开介绍。
  • 图  1  早期NIC实验辐射流测量结果与模拟值的一致性对比

    Figure  1.  Agreement between measured radiation fluxes and simulations at subscale and ignition-scale energies in early NIC experiments

    图  2  缩比黑腔实验中X 射线 bangtime 与峰值辐射流的关系,揭示缩比黑腔模拟对驱动强度的系统性高估[7]

    Figure  2.  Relationship between X-ray bangtime and peak radiation flux showing the systematic drive overprediction in subscale hohlraum simulations[7]

    图  3  0.7 倍缩比真空黑腔的辐射流测量结果,体现高流模型对实验的改进拟合能力

    Figure  3.  Radiation flux measurements in 0.7-scale vacuum hohlraums demonstrating improved modeling with the high-flux approach

    图  4  NIC充气黑腔实验中峰值X射线辐射流测量值与高流模型和普通黑腔模型模拟结果对比[13]

    Figure  4.  Peak X-ray flux in NIC gas-filled hohlraum experiments and its comparison with high-flux model and common hohlraum predictions[13]

    图  5  NIC全能量内爆调谐实验中内爆动力学的测量结果与模拟值对比[15]

    Figure  5.  Measurements and simulations of implosion dynamics in NIC full-energy tuning experiments[15]

    图  6  视因子测量平台中黑腔结构与诊断配置示意[17]

    Figure  6.  Hohlraum geometry and diagnostic configuration used in the view-factor measurement platform[17]

    图  7  视因子实验中 X 射线辐射流的测量与模拟对比,体现靶丸处驱动不足[17]

    Figure  7.  Measured and simulated X-ray fluxes in the view-factor experiment revealing the drive deficit at the capsule[17]

    图  8  NIF近真空综合内爆实验中的辐射温度、内爆轨迹及发射历程[19]

    Figure  8.  Radiation temperature, implosion trajectory and emission histories in NIF near-vacuum integrated implosion experiments [19]

    图  9  不同内外环波长差的黑腔类型及其相对模拟结果的激光能量利用率[16]

    Figure  9.  Laser-energy fraction relative to simulations for hohlraums with different inner–outer cone wavelength differences[16]

    图  10  NIF通过匹配冲击波定时与内爆轨迹获得激光功率乘积因子[4]

    Figure  10.  Derivation of laser power multipliers by matching simulated and measured shock timing and implosion trajectory at NIF[4]

    图  11  NIF 内爆模拟中典型时间依赖的激光功率乘积因子[15]

    Figure  11.  Typical time-dependent laser power multipliers used in NIF implosion simulations[15]

    图  12  NIF基于激光功率与内环份额乘积因子的模拟修正流程示意图[5]

    Figure  12.  Schematic of the simulation correction workflow based on laser power and inner-cone fraction multipliers at NIF[5]

    图  13  NIF 氘氚分层靶典型内爆实验中的激光功率与内环份额乘积因子[21]

    Figure  13.  Laser power and inner-cone fraction multipliers for a typical NIF DT layered implosion[21]

    图  14  NIF不同实验条件采用的乘积因子[5]

    Figure  14.  Drive multipliers used under different NIF experimental conditions[5]

    图  15  SCRAM 与多种 DCA 原子模型计算的金光谱积分发射率随温度变化的比较[24]

    Figure  15.  Comparison of spectrally integrated Au emission versus temperature calculated using SCRAM and several DCA atomic models[24]

    图  16  镜反光过程示意图[26]

    Figure  16.  Schematic of the glint process[26]

    图  17  三种模型的模拟结果与实验结果的对比[24]

    Figure  17.  Comparison of simulation results from three models with experimental data[24]

    图  18  三种模型在不同充气密度条件下模拟的X光bangtime和实验结果的差异[24]

    Figure  18.  Differences between simulated and measured X-ray bangtimes for three models at different fill densities[24]

    图  19  用于测量充气黑腔内环镜反光的 Ti 观测盘实验设计[26]

    Figure  19.  Ti witness-plate experimental setup for measuring inner-beam glint in gas-filled hohlraums [26]

    图  20  0.6 mg/cc充气密度下X射线图像与镜反光射线追踪模拟对比结果[26]

    Figure  20.  Comparison of X-ray images and raytracing simulations of glint at a gas-fill density of 0.6 mg/cc[26]

    图  21  不同充气密度下 Ti 观测盘镜反光功率和 X 射线图像的实验结果[26]

    Figure  21.  Ti witness-plate measurements of glint power and X-ray images at different gas-fill densities [26]

    图  22  用于诊断黑腔等离子体状态的埋点谱仪平台实验设计[27]

    Figure  22.  Schematic of the dot spectroscopy platform for diagnosing hohlraum plasma conditions [27]

    图  23  埋点谱仪平台实验结果及与不同热传导模型的对比[26]

    Figure  23.  Dot-spectroscopy measurements and transport-model comparisons in the view-factor hohlraum platform[26]

    图  24  NIF橄榄球黑腔实验模拟和测量得到的P2模畸变的对比[30]

    Figure  24.  Comparison of simulated and measured P2 mode distortion in NIF rugby hohlraum experiments[30]

    图  25  NIF橄榄球黑腔模拟中引入与未引入腔壁–气体混合时的物质状态对比[30]

    Figure  25.  Hohlraum material state in NIF rugby-hohlraum simulations with and without wall–gas mix [30]

    图  26  NIF 直柱金腔实验中呈现周期扰动结构的 X 光静态成像系统图像[30]

    Figure  26.  SXI images from NIF cylindrical gold hohlraum experiments showing periodic perturbation structures [30]

    图  27  腔壁–气体混合引起的熵增与金–氦界面金泡振幅归一化量之间的关系[31]

    Figure  27.  Relationship between entropy generation from wall–gas mixing and normalized bubble amplitude at the Au–He interface[31]

    图  28  NIF N140207发高分辨率模拟中金-气体界面的金浓度分布呈现KH涡旋结构[32]

    Figure  28.  Gold concentration distribution at the gold-gas interface of the NIF N140207 shot displaying KH roll-ups from high-resolution simulation [32]

    图  29  NIF低充气视因子实验设计(LEH端向下)[33]

    Figure  29.  NIF low-gas-fill viewfactor experimental design with LEH end down[33]

    图  30  NIF低充气视因子实验设计(敞口端向下)[33]

    Figure  30.  NIF Low-Gas-Fill ViewFactor Experimental Design with open end down[33]

    图  31  NIF低充气视因子实验结果(LEH端向下)[33]

    Figure  31.  NIF Low-Gas-Fill ViewFactor Experimental results with LEH end down[33]

    图  32  引入不透明度因子后NIF“Build A Hohlraum”能量亏损分解实验中的辐射强度亏损结果[34]

    Figure  32.  Radiant intensity deficits modeled with an opacity factor in the NIF “Build A Hohlraum” campaign[34]

    图  33  神光-III原型充气柱腔靶丸表面再发射流实验[37]

    Figure  33.  Gas-filled cylindrical hohlraum re-emitted flux experiment on capsule at SG-III Prototype[37]

    图  34  神光-III原型充气柱腔靶丸再发射流实验结果[37]

    Figure  34.  Results of capsule surface re-emission flux in SG-III prototype gas-filled hohlraums[37]

    图  35  神光100 kJ装置再发射流和冲击波速度联合诊断示意图[6]

    Figure  35.  Schematic of joint diagnostics of re-emitted flux and shock wave velocity at Shenguang 100 kJ facility[6]

    图  36  神光100 kJ装置再发射流和冲击波速度联合诊断实验结果[6]

    Figure  36.  Experimental results of joint diagnostics of re-emitted flux and shock wave velocity at Shenguang 100 kJ facility[6]

  • [1] Amendt P, Glendinning S G, Hammel B A, et al. Direct measurement of X-ray drive from surrogate targets in Nova hohlraums[J]. Physical Review Letters, 1996, 77(18): 3815-3818. doi: 10.1103/PhysRevLett.77.3815
    [2] Glenzer S H, Suter L J, Turner R E, et al. Energetics of inertial confinement fusion hohlraum plasmas[J]. Physical Review Letters, 1998, 80(13): 2845-2848. doi: 10.1103/PhysRevLett.80.2845
    [3] Kline J L, Glenzer S H, Olson R E, et al. Observation of high soft X-ray drive in large-scale hohlraums at the national ignition facility[J]. Physical Review Letters, 2011, 106: 085003. doi: 10.1103/PhysRevLett.106.085003
    [4] Clark D S, Hinkel D E, Eder D C, et al. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20: 056318. doi: 10.1063/1.4802194
    [5] Kritcher A L, Clark D, Haan S, et al. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators[J]. Physics of Plasmas, 2018, 25: 056309. doi: 10.1063/1.5018000
    [6] Xie Xufei, Hou Lifei, Cai Hongbo, et al. Measurement of time-dependent drive flux on the capsule for indirectly driven inertial confinement fusion experiments[J]. Physical Review Letters, 2022, 128: 075001. doi: 10.1103/PhysRevLett.128.075001
    [7] Meezan N B, Atherton L J, Callahan D A, et al. National ignition campaign Hohlraum energetics[J]. Physics of Plasmas, 2010, 17: 056304. doi: 10.1063/1.3354110
    [8] Glenzer S H, Macgowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106: 085004. doi: 10.1103/PhysRevLett.106.085004
    [9] Farmer W A, Bruulsema C, Swadling G F, et al. Validation of heat transport modeling using directly driven beryllium spheres[J]. Physics of Plasmas, 2020, 27: 082701. doi: 10.1063/5.0005776
    [10] Kline J L, Widmann K, Warrick A, et al. The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E321. doi: 10.1063/1.3491032
    [11] Rosen M D, Scott H A, Hinkel D E, et al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums[J]. High Energy Density Physics, 2011, 7(3): 180-190. doi: 10.1016/j.hedp.2011.03.008
    [12] Kirkwood R K, Moody J D, Kline J, et al. A review of laser–plasma interaction physics of indirect-drive fusion[J]. Plasma Physics and Controlled Fusion, 2013, 55: 103001. doi: 10.1088/0741-3335/55/10/103001
    [13] Town R P J, Rosen M D, Michel P A, et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments[J]. Physics of Plasmas, 2011, 18: 056302. doi: 10.1063/1.3562552
    [14] Hicks D G, Meezan N B, Dewald E L, et al. Implosion dynamics measurements at the National Ignition Facility[J]. Physics of Plasmas, 2012, 19: 122702. doi: 10.1063/1.4769268
    [15] Jones O S, Cerjan C J, Marinak M M, et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments[J]. Physics of Plasmas, 2012, 19: 056315. doi: 10.1063/1.4718595
    [16] Moody J D, Callahan D A, Hinkel D E, et al. Progress in hohlraum physics for the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056317. doi: 10.1063/1.4876966
    [17] MacLaren S A, Schneider M B, Widmann K, et al. Novel characterization of capsule X-ray drive at the national ignition facility[J]. Physical Review Letters, 2014, 112: 105003. doi: 10.1103/PhysRevLett.112.105003
    [18] Meezan N B, MacKinnon A J, Hicks D G, et al. X-ray driven implosions at ignition relevant velocities on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20: 056311. doi: 10.1063/1.4803915
    [19] Le Pape S, Divol L, Berzak Hopkins L, et al. Observation of a reflected shock in an indirectly driven spherical implosion at the National Ignition Facility[J]. Physical Review Letters, 2014, 112: 225002. doi: 10.1103/PhysRevLett.112.225002
    [20] Robey H F, Boehly T R, Celliers P M, et al. Shock timing experiments on the National Ignition Facility: initial results and comparison with simulation[J]. Physics of Plasmas, 2012, 19: 042706. doi: 10.1063/1.3694122
    [21] Lawrence Livermore National Laboratory (LLNL). Laser Indirect Drive input to NNSA 2020 Report[R]. 2020.
    [22] Kritcher A L, Young C V, Robey H F, et al. Design of inertial fusion implosions reaching the burning plasma regime[J]. Nature Physics, 2022, 18(3): 251-258. doi: 10.1038/s41567-021-01485-9
    [23] Kritcher A L, Zylstra A B, Callahan D A, et al. Achieving record hot spot energies with large HDC implosions on NIF in Hybrid-E[J]. Physics of Plasmas, 2021, 28: 072706. doi: 10.1063/5.0047841
    [24] Jones O S, Suter L J, Scott H A, et al. Progress towards a more predictive model for hohlraum radiation drive and symmetry[J]. Physics of Plasmas, 2017, 24: 056312. doi: 10.1063/1.4982693
    [25] Hansen S B, Bauche J, Bauche-Arnoult C, et al. Hybrid atomic models for spectroscopic plasma diagnostics[J]. High Energy Density Physics, 2007, 3(1/2): 109-114. doi: 10.1016/j.hedp.2007.02.032
    [26] Lemos N, Farmer W A, Izumi N, et al. Specular reflections (“glint”) of the inner beams in a gas-filled cylindrical hohlraum[J]. Physics of Plasmas, 2022, 29: 092704. doi: 10.1063/5.0099937
    [27] Farmer W A, Jones O S, Barrios M A, et al. Heat transport modeling of the dot spectroscopy platform on NIF[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044009. doi: 10.1088/1361-6587/aaaefd
    [28] Farmer W A, Koning J M, Strozzi D J, et al. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment[J]. Physics of Plasmas, 2017, 24: 052703. doi: 10.1063/1.4983140
    [29] Schurtz G P, Nicolaï P D, Busquet M. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes[J]. Physics of Plasmas, 2000, 7(10): 4238-4249. doi: 10.1063/1.1289512
    [30] Amendt P, Ross J S, Milovich J L, et al. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: comparison with high-flux modeling and the potential for gas-wall interpenetration[J]. Physics of Plasmas, 2014, 21: 112703. doi: 10.1063/1.4901195
    [31] Amendt P. Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets[J]. Physics of Plasmas, 2021, 28: 072701. doi: 10.1063/5.0049114
    [32] Vandenboomgaerde M, Bonnefille M, Gauthier P. The Kelvin-Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing[J]. Physics of Plasmas, 2016, 23: 052704. doi: 10.1063/1.4948468
    [33] Chen Hui, Woods D T, Farmer W A, et al. Understanding the deficiency in inertial confinement fusion hohlraum x-ray flux predictions using experiments at the National Ignition Facility[J]. Physical Review E, 2024, 110: L013201. doi: 10.1103/PhysRevE.110.L013201
    [34] Swadling G F, Farmer W A, Chen H, et al. Resolving discrepancies in bang-time predictions for indirect-drive ICF experiments on the NIF: insights from the Build-A-Hohlraum campaign[J]. Physics of Plasmas, 2025, 32: 052707. doi: 10.1063/5.0259922
    [35] Ren Kuan, Liu Shenye, Du Huabing, et al. New two-dimensional space-resolving flux detection technique for measurement of hohlraum inner radiation in Shenguang-III prototype[J]. Review of Scientific Instruments, 2015, 86: 103112. doi: 10.1063/1.4934250
    [36] Ren Kuan, Liu Shenye, Xie Xufei, et al. First exploration of radiation temperatures of the laser spot, re-emitting wall and entire hohlraum drive source[J]. Scientific Reports, 2019, 9: 5050. doi: 10.1038/s41598-019-41424-6
    [37] Xie Xufei, Wu Changshu, Chen Jinwen, et al. Characterization of radiation drive by measuring the localized re-emitted flux from the capsule in inertial confinement fusion experiments[J]. Nuclear Fusion, 2022, 62: 126008. doi: 10.1088/1741-4326/ac8fa2
    [38] Kuang Longyu, Li Hang, Jing Longfei, et al. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition[J]. Scientific Reports, 2016, 6: 34636. doi: 10.1038/srep34636
    [39] Li Xin, Dong Yunsong, Kang Dongguo, et al. First indirect drive experiment using a six-cylinder-port hohlraum[J]. Physical Review Letters, 2022, 128: 195001. doi: 10.1103/PhysRevLett.128.195001
    [40] Farmer W A, Tabak M, Hammer J H, et al. High-temperature hohlraum designs with multiple laser-entrance holes[J]. Physics of Plasmas, 2019, 26: 032701. doi: 10.1063/1.5087140
  • 加载中
图(36)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-14
  • 修回日期:  2026-01-27
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-02-12

目录

    /

    返回文章
    返回