留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谐波锁模的GHz重频可调飞秒脉冲放大系统

郭梦雪 王开 黄千千 戴礼龙 江凯琳 张博 李卫淅 牟成博

郭梦雪, 王开, 黄千千, 等. 基于谐波锁模的GHz重频可调飞秒脉冲放大系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250347
引用本文: 郭梦雪, 王开, 黄千千, 等. 基于谐波锁模的GHz重频可调飞秒脉冲放大系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250347
Guo Mengxue, Wang Kai, Huang Qianqian, et al. Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250347
Citation: Guo Mengxue, Wang Kai, Huang Qianqian, et al. Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250347

基于谐波锁模的GHz重频可调飞秒脉冲放大系统

doi: 10.11884/HPLPB202638.250347
基金项目: 国家自然科学基金项目(62505168, 62135007);上海市自然科学基金项目(24ZR1422000);国家资助博士研究人员计划C档项目(GZC20250549);天津大学精密测试技术及仪器全国重点实验室开放基金项目(Pilab2505);国家重点研发计划项目(2020YFB1805800)
详细信息
    作者简介:

    郭梦雪,guomengxue@shu.edu.cn

    通讯作者:

    牟成博,mouc1@shu.edu.cn

  • 中图分类号: TN248

Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking

  • 摘要: 报道了一种基于被动谐波锁模种子源的 GHz 重复频率飞秒光纤激光放大系统,实现了1~3 GHz范围内的稳定运行。系统采用两级放大器并结合色散管理技术,在全调谐范围内均保持稳定输出。在脉冲重复频率为3.1 GHz和2.0 GHz的条件下,分别实现了2.1 W的平均输出功率和195 fs的最窄脉冲宽度,且相应放大后的边模抑制比均保持在33 dB以上。结果表明,该方案能够在宽频率范围内实现稳定的高功率放大与脉冲压缩,为高重复频率超快光纤激光的应用奠定了实验基础。
  • 图  1  GHz谐波锁模光纤激光放大系统结构示意图

    Figure  1.  Schematic diagram of the GHz harmonic mode-locked fiber laser amplification system

    图  2  种子源在不同重复频率下的脉冲输出特性

    Figure  2.  Output characteristics of the seed laser at different repetition rates

    图  3  1.1 GHz重复频率下脉冲经预放大前后的自相关轨迹

    Figure  3.  Autocorrelation traces of the pulses at 1.1 GHz repetition rate before and after pre-amplification

    图  4  放大器在不同重复频率下的输出特性

    Figure  4.  Output characteristics of the amplifier at different repetition rates

    表  1  不同谐波锁模状态下主放大后脉冲输出特性

    Table  1.   Amplified pulse characteristics at different repetition rates

    repetition
    rate/GHz
    pre-amp pump power
    (forward)/mW
    pre-amp pump power
    (backward)/mW
    main amp pump
    powe/W
    average output
    power/W
    compressed pulse
    width/fs
    SMSR/dB SNR/dB
    1.1 326 292 9.5 1.41 305 34.1 63.3
    1.6 498 556 9.5 1.68 195 38.1 63.8
    2.0 672 735 9.5 1.85 195 35.4 58.1
    2.8 672 735 9.5 2.03 269 34.0 51.0
    3.1 672 735 9.5 2.10 370 35.3 53.2
    下载: 导出CSV
  • [1] Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 2018, 12(4): 209-214. doi: 10.1038/s41566-018-0135-2
    [2] Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
    [3] Zhao Chunzhu, Chen Shiyuan, Zhang Lifeng, et al. Miniature three-photon microscopy maximized for scattered fluorescence collection[J]. Nature Methods, 2023, 20(4): 617-622. doi: 10.1038/s41592-023-01777-3
    [4] Liu Junqiu, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 2020, 14(8): 486-491. doi: 10.1038/s41566-020-0617-x
    [5] Hu Hao, Da Ros F, Pu Minhao, et al. Single-source chip-based frequency comb enabling extreme parallel data transmission[J]. Nature Photonics, 2018, 12(8): 469-473. doi: 10.1038/s41566-018-0205-5
    [6] Crotti C, Deloison F, Alahyane F, et al. Wavelength optimization in femtosecond laser corneal surgery[J]. Investigative Opthalmology & Visual Science, 2013, 54(5): 3340-3349. doi: 10.1117/12.831893
    [7] He Fei, Yu Junjie, Tan Yuanxin, et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Scientific Reports, 2017, 77: 40785. doi: 10.1038/srep40785
    [8] Qin Jiarong, Dai Ruihong, Li Yao, et al. 20 GHz actively mode-locked thulium fiber laser[J]. Optics Express, 2018, 26(20): 25769-25777. doi: 10.1364/OE.26.025769
    [9] Wang Wenlong, Lin Wei, Cheng Huihui, et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 125 GHz[J]. Optics Express, 2019, 27(8): 10438-10448. doi: 10.1364/OE.27.010438
    [10] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
    [11] Grudinin A B, Richardson D J, Payne D N. Passive harmonic modelocking of a fibre soliton ring laser[J]. Electronics Letters, 1993, 29(21): 1860-1861. doi: 10.1049/el:19931238
    [12] Lee K F, Lampen J, Li Peng, et al. Fully stabilized Er fiber comb at 1 GHz by harmonic modelocking[J]. Optica, 2025, 12(9): 1486-1491. doi: 10.1364/OPTICA.568460
    [13] Wang Feng, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons[J]. Science, 2005, 308(5723): 838-841. doi: 10.1126/science.1110265
    [14] Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97: 203106. doi: 10.1063/1.3517251
    [15] Lau K Y, Liu Xiaofeng, Qiu Jianrong. A comparison for saturable absorbers: carbon nanotube versus graphene[J]. Advanced Photonics Research, 2022, 3: 2200023. doi: 10.1002/adpr.202200023
    [16] Jun C S, Choi S Y, Rotermund F, et al. Toward higher-order passive harmonic mode-locking of a soliton fiber laser[J]. Optics Letters, 2012, 37(11): 1862-1864. doi: 10.1364/OL.37.001862
    [17] Fujisaki A, Yoshida M, Hirooka T, et al. Generation of 10 W, 100 fs, 10 GHz pulse train using high power EDFA-MOPA system with cascaded Raman pumping[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics. 2015: 1-2.
    [18] Chen Xuewen, Lin Wei, Wang Wenlong, et al. High-power femtosecond all-fiber laser system at 1.5 µm with a fundamental repetition rate of 4.9 GHz[J]. Optics Letters, 2021, 46(8): 1872-1875. doi: 10.1364/OL.418331
    [19] Fan Yiheng, Xiu Hao, Lin Wei, et al. Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 μm[J]. High Power Laser Science and Engineering, 2023, 11: e50. doi: 10.1017/hpl.2023.36
    [20] Pinault S C, Potasek M J. Frequency broadening by self-phase modulation in optical fibers[J]. Journal of the Optical Society of America B, 1985, 2(8): 1318-1319. doi: 10.1364/JOSAB.2.001318
    [21] 周毅. GHz重频飞秒光纤激光产生、放大与非线性效应研究[D]. 广州: 华南理工大学, 2019: 75

    Zhou Yi. Research on GHz repetition rate femtosecond fiber laser generation, amplification and nonlinear effects[D]. Guangzhou: South China University of Technology, 2019: 75
    [22] Agrawal G P. Nonlinear fiber optics[M]. 5th ed. Amsterdam: Academic Press, 2013.
    [23] Chraplyvy A R. Limitations imposed by fiber nonlinearity on WDM systems[J]. IEEE Photon Technol Lett, 1994, 6(5): 930-933.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-15
  • 修回日期:  2025-12-25
  • 录用日期:  2025-12-08
  • 网络出版日期:  2026-01-16

目录

    /

    返回文章
    返回