留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高重复频率高压脉冲感应加速腔磁芯复位方法

黄子平 谌怡 吕璐

黄子平, 谌怡, 吕璐. 高重复频率高压脉冲感应加速腔磁芯复位方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250363
引用本文: 黄子平, 谌怡, 吕璐. 高重复频率高压脉冲感应加速腔磁芯复位方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250363
Huang Ziping, Chen Yi, Lü Lu. Magnetic core reset method of high repetition high voltage pulse induction acceleration cavity[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250363
Citation: Huang Ziping, Chen Yi, Lü Lu. Magnetic core reset method of high repetition high voltage pulse induction acceleration cavity[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250363

高重复频率高压脉冲感应加速腔磁芯复位方法

doi: 10.11884/HPLPB202638.250363
基金项目: 国家自然科学基金项目(12275255、12475163)
详细信息
    作者简介:

    黄子平,hzp106@qq.com

  • 中图分类号: TL503.3

Magnetic core reset method of high repetition high voltage pulse induction acceleration cavity

  • 摘要: 近年来,闪光放疗、闪光摄影等新的应用领域对重复频率达到kHz以上的高重复频率直线感应加速器(LIA)提出了迫切的需求,而感应加速腔磁芯能否在重复频率脉冲间有效复位是限制高重复频率直线感应加速器能否实现的关键因素之一。通过高压实验和电路模拟,对非晶磁芯和纳米微晶两种磁芯的多种快速复位方法进行了研究和对比分析。在此基础上,结合自研的高重复频率脉冲感应加速单元,开展了加速腔磁芯脉冲间复位效果的实验测试。研究结果表明,纳米微晶磁芯更适用于高重复频率感应加速腔:利用电感隔离直流复位方法,现有装置水平能够满足10 kHz重复频率下纳米微晶磁芯的复位需求;利用低剩磁纳米微晶磁芯的自恢复能力,则可在100 kHz重复频率下实现加速腔磁芯的自动复位。
  • 图  1  感应加速腔结构示意图

    Figure  1.  Schematic diagram of induction acceleration cavity structure

    图  2  铁磁材料磁滞回线示意图

    Figure  2.  Schematic diagram of hysteresis loop of ferromagnetic material

    图  3  基于半桥电流的双极性脉冲功率源示意图

    Figure  3.  Schematic diagram of bipolar pulsed power source based on half-bridge current

    图  4  基于隔离开关的脉冲复位示意图

    Figure  4.  Schematic diagram of pulse reset based on disconnecting switch

    图  5  基于电感隔离的直流复位示意图

    Figure  5.  Schematic diagram of DC reset based on inductance isolation

    图  6  非晶和纳米微晶两种磁芯的矫顽力Hc和磁化损耗Ps随重复频率的变化曲线

    Figure  6.  Curves of Hc and Ps with repetition frequency for amorphous and nanocrystalline cores

    图  7  两种磁芯对应的直流复位电流和电压随重复频率的变化曲线

    Figure  7.  The curves of DC reset current and voltage with repetition frequency for Amorphous and Nano crystalline magnetic core

    图  8  低剩磁磁芯磁滞回线示意图

    Figure  8.  Schematic diagram of hysteresis loop of low Br magnetic core

    图  9  磁芯重复频率饱和励磁实验布局

    Figure  9.  Experimental layout of magnetic core repeated frequency saturation excitation

    图  10  磁芯饱和励磁后的电压电流波形

    Figure  10.  Voltage and current waveform after magnetic core saturation excitation

    图  11  不同重复频率脉冲励磁下低剩磁磁芯的磁化曲线

    Figure  11.  Magnetization curves of low Br magnetic cores excited by pulses with different repetition frequencies

    图  12  自复位低剩磁磁芯感应产生的100 kHz重复频率脉冲电压波形

    Figure  12.  100 kHz repetition pulse voltage generated by self-reset low Br nanocrystalline cores

  • [1] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006

    Deng Jianjun. Linear induction electron accelerator[M]. Beijing: National Defense Industry Press, 2006
    [2] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201

    Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱ accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201
    [3] Scarpetti R D, Nath S, Barraza J, et al. Status of the DARHT 2nd axis accelerator at the Los Alamos National Laboratory[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 831-835.
    [4] Burris-Mog T J. The ASD Scorpius accelerator at the NNSS. Recruitment slides for the University of Nevada, Reno [Slides][R]. LA-UR-20-27989, 2020.
    [5] Starostenko D A, Logachev P V, Akimov A V, et al. Results of operating LIA-2 in radiograph mode[J]. Physics of Particles and Nuclei Letters, 2014, 11(5): 660-664. doi: 10.1134/S1547477114050264
    [6] 陈永涛. 强动载下金属样品的表面微喷及融化破碎现象研究[R]. GF-A0203048G, 2015

    Chen Yongtao. Research on surface microjet and melting and fragmentation of metal samples under forced dynamic load[R]. GF-A0203048G, 2015
    [7] Montay-Gruel P, Bouchet A, Jaccard M, et al. X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice[J]. Radiotherapy and Oncology, 2018, 129(3): 582-588. doi: 10.1016/j.radonc.2018.08.016
    [8] 高峰, 羊奕伟, 戴堂知, 等. 闪光放射治疗综述[J]. 华西医学, 2020, 35(2): 225-229 doi: 10.7507/1002-0179.201912078

    Gao Feng, Yang Yiwei, Dai Tangzhi, et al. Review of FLASH radiotherapy[J]. West China Medical Journal, 2020, 35(2): 225-229 doi: 10.7507/1002-0179.201912078
    [9] Sampayan S E, Sampayan K C, Caporaso G J, et al. Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity[J]. Scientific Reports, 2021, 11: 17104. doi: 10.1038/s41598-021-95807-9
    [10] 谌怡, 黄子平, 张篁, 等. 氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源[J]. 强激光与粒子束, 2024, 36: 055009 doi: 10.11884/HPLPB202436.230420

    Shen Yi, Huang Ziping, Zhang Huang, et al. kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055009 doi: 10.11884/HPLPB202436.230420
    [11] Takayama K, Briggs R J. Induction accelerators[M]. New York: Springer, 2011.
    [12] 黄子平, 蒋薇, 叶毅. 多脉冲直线感应加速器外接复位系统[J]. 强激光与粒子束, 2014, 26: 045101 doi: 10.3788/HPLPB20142604.45101

    Huang Ziping, Jiang Wei, Ye Yi. Reset system for multi-pulse linear induction accelerator[J]. High Power Laser and Particle Beams, 2014, 26: 045101 doi: 10.3788/HPLPB20142604.45101
    [13] Takayama K, Kishiro J. Induction synchrotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451(1): 304-317.
    [14] Takayama K, Arakida Y, Dixit T, et al. Experimental demonstration of the induction synchrotron[J]. Physical Review Letters, 2007, 98: 054801. doi: 10.1103/PhysRevLett.98.054801
    [15] Huang Ziping, Wang Wei. Design of compact accelerator module of the induction synchrotron[J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1637-1640. doi: 10.1109/TPS.2019.2893502
    [16] 黄子平, 张良, 马兴明, 等. 低剩磁磁芯自复位能力研究[J]. 强激光与粒子束, 2008, 20(9): 1528-1532

    Huang Ziping, Zhang Liang, Ma Xingming, et al. Research of self-restoreation ability of low remanence magnetic cores[J]. High Power Laser and Particle Beams, 2008, 20(9): 1528-1532
  • 加载中
图(12)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-23
  • 修回日期:  2025-12-01
  • 录用日期:  2025-11-17
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回