留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的激光自混合干涉微位移重构

李鑫涛 刘晖 乔硕 杨一帆 吕杨 刘霞 熊玲玲

李鑫涛, 刘晖, 乔硕, 等. 基于卷积神经网络的激光自混合干涉微位移重构[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250370
引用本文: 李鑫涛, 刘晖, 乔硕, 等. 基于卷积神经网络的激光自混合干涉微位移重构[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250370
Li Xintao, Liu Hui, Qiao Shuo, et al. Laser self-mixing interference micro displacement reconstruction based on convolutional neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250370
Citation: Li Xintao, Liu Hui, Qiao Shuo, et al. Laser self-mixing interference micro displacement reconstruction based on convolutional neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250370

基于卷积神经网络的激光自混合干涉微位移重构

doi: 10.11884/HPLPB202638.250370
基金项目: 陕西省自然科学基础研究计划项目(2025JC-YBMS-770); 陕西省秦创原“科学家+工程师”队伍项目(2023KXJ-129)
详细信息
    作者简介:

    李鑫涛,230221119@stu.xpu.edu.cn

    通讯作者:

    刘 晖,huiliu@xpu.edu.cn

  • 中图分类号: TN247

Laser self-mixing interference micro displacement reconstruction based on convolutional neural network

  • 摘要: 提出了一种基于卷积神经网络CNN)的半导体激光自混合干涉(SMI)微位移重构方法,将SMI信号分段并以窗口平均位移作为标签输入卷积神经网络,实现了物体微米量级位移的直接重构,避免了位移重构过程中复杂的SMI信号相位解包裹计算过程。所使用的卷积神经网络由三组卷积层、池化层和线性整流函数组成,其中卷积层用于提取SMI信号中的局部位移特征,池化层用于压缩SMI信号中的特征信息并增强抗干扰能力,线性整流函数有助于突出SMI信号中的关键位移特征。在理论仿真中,将具有10 dB噪声的SMI信号输入至已训练完成的卷积神经网络中,直接输出物体重构微位移的均方根误差为$ 5.3\times {10}^{-8} $;在实验中,将包含系统噪声的SMI信号输入已训练完成的卷积神经网络中,直接输出物体重构微位移的均方根误差为$ 2.1\times {10}^{-7} $。理论仿真与实际实验结果均表明,卷积神经网络通过分析SMI信号的时序片段,能够实现半导体激光自混合干涉信号的微米量级位移重构。
  • 图  1  卷积神经网络的网络架构(SMI(Self-Mixing Interferometry): 激光自混合干涉;ReLU(Rectified Linear Unit): 线性整流函数)

    Figure  1.  Convolutional neural network architecture :(SMI) laser Self-Mixing Interferometry; Rectified Linear Unit (ReLU)

    图  2  卷积神经网络的网络滑动时间窗示意图

    Figure  2.  Schematic of the sliding time windows in the CNN

    图  3  三层卷积层特征提取图

    Figure  3.  Three feature activations of the convolutional layers

    图  4  模拟物体的振动位移和对应的SMI信号

    Figure  4.  Simulated vibration displacement of the object and corresponding SMI signals

    图  5  卷积神经网络训练集的SMI模拟信号与重构结果

    Figure  5.  Simulated SMI signals and reconstructed displacement results of the CNN training set

    图  6  卷积神经网络测试集的SMI模拟信号与重构结果

    Figure  6.  Simulated SMI signals and reconstructed displacement results of the CNN testing set

    图  7  卷积神经网络的回归拟合效果散点图

    Figure  7.  Scatter plots of regression fitting results of the convolutional neural network

    图  8  激光自混合干涉实验结构示意图

    Figure  8.  Schematic diagram of the experimental structure for laser self-mixing interference

    图  9  激光自混合干涉实验装置

    Figure  9.  Experimental setup for laser self-mixing interference

    图  10  压电陶瓷的调制电压和实验SMI信号

    Figure  10.  Modulation voltage of PZT and experimental SMI signal

    图  11  卷积神经网络训练集的SMI实验信号与归一化位移重构结果

    Figure  11.  Experimental SMI signals and normalized displacement reconstruction results of the CNN training set

    图  12  卷积神经网络测试集的SMI实验信号与归一化位移重构结果

    Figure  12.  Experimental SMI signals and normalized displacement reconstruction results of the CNN testing set

    图  13  卷积神经网络的回归拟合效果散点图

    Figure  13.  Scatter plots of regression fitting results of the convolutional neural network

    表  1  数值模拟中使用的参数

    Table  1.   Parameters used in numerical simulation

    $ {\boldsymbol{L}}_{\boldsymbol{e}\boldsymbol{x}\boldsymbol{t}} $ (distance from the laser
    to the object)/mm
    $ \boldsymbol{L} $ (cavity length of diode
    laser)/mm
    t (simulation
    time)/s
    A (vibration amplitude of
    external object)/$ \mu \mathrm{m} $
    49.43 0.5 0.2 2
    f (external object vibration
    frequency)/$ \mathrm{Hz} $
    $ \boldsymbol{\alpha } $ (linewidth enhancement
    factor)/
    C (feedback
    parameter)/
    $ \lambda $ (wavelength of the laser
    diode)/nm
    10 4.15 0.8 635
    下载: 导出CSV
  • [1] Guo Changying, Wang Qi. Laser self-mixing interference displacement signal filtering method based on empirical mode decomposition and wavelet threshold[J]. Measurement Science and Technology, 2024, 35: 045201. doi: 10.1088/1361-6501/ad166c
    [2] Li Qinyu, Li Quan, Wei Xia, et al. Laser self-mixing interferometry for direct displacement reconstruction using deep learning[J]. Optics & Laser Technology, 2025, 192: 113423. doi: 10.1016/j.optlastec.2025.113423
    [3] Liu Hui, Li Xintao, You Yaqiang, et al. Wiener filtering in wavelet domain on laser self-mixing interference for micro-displacement reconstruction[J]. Photonics, 2025, 12: 40. doi: 10.3390/photonics12010040
    [4] Skripal A V, Dobdin S Y, Inkin M G, et al. Measurement of distance by the maximum frequency of the interference signal with harmonic deviation of the wavelength of the self-mixing laser[J]. Technical Physics, 2024, 69(5): 1400-1406. doi: 10.1134/S1063784224040406
    [5] 曹雪, 冯立娜, 王秀芳, 等. 基于差分的激光自混合光栅干涉位移测量[J]. 吉林大学学报(信息科学版), 2023, 41(4): 583-589 doi: 10.3969/j.issn.1671-5896.2023.04.002

    Cao Xue, Feng Lina, Wang Xiufang, et al. Displacement measurement of self-mixing grating interferometer based on difference[J]. Journal of Jilin University (Information Science Edition), 2023, 41(4): 583-589 doi: 10.3969/j.issn.1671-5896.2023.04.002
    [6] 张玉杰, 徐雷, 管钰晴, 等. 基于平面反射式全息光栅的激光自混合纳米位移测量研究[J]. 红外与激光工程, 2023, 52: 20220676 doi: 10.3788/IRLA20220676

    Zhang Yujie, Xu Lei, Guan Yuqing, et al. Research on laser self-mixing Nano-displacement measurement based on plane reflective holographic grating[J]. Infrared and Laser Engineering, 2023, 52: 20220676 doi: 10.3788/IRLA20220676
    [7] 彭婉妮, 牛海莎, 潘雨婷, 等. 基于全光纤激光自混合干涉技术的石英玻璃热光系数测量[J]. 光电子·激光, 2022, 33(6): 578-584 doi: 10.16136/j.joel.2022.06.0684

    Peng Wanni, Niu Haisha, Pan Yuting, et al. Measurement of thermo-optical coefficient of quartz glass based on all-fiber laser self-mixing interference technology[J]. Journal of Optoelectronics·Laser, 2022, 33(6): 578-584 doi: 10.16136/j.joel.2022.06.0684
    [8] 张晨, 陈涛, 赵宇. 基于激光自混合干涉技术的单个微纳颗粒探测[J]. 激光与光电子学进展, 2020, 57: 192803 doi: 10.3788/LOP57.192803

    Zhang Chen, Chen Tao, Zhao Yu. Single micro-Nano particle detection based on laser self-mixing interference technology[J]. Laser & Optoelectronics Progress, 2020, 57: 192803 doi: 10.3788/LOP57.192803
    [9] 蔡家轩, 楚卫东. 基于THz-QCL自混合干涉的运动传感[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 985-990 doi: 10.11805/TKYDA2021303

    Cai Jiaxuan, Chu Weidong. Motion sensing based on Self-Mixing interferometry with THz-QCL[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(10): 985-990 doi: 10.11805/TKYDA2021303
    [10] Yu Lian, Yang Yu, Liu Bin, et al. Laser self-mixing interference: optical fiber coil sensors for acoustic emission detection[J]. Photonics, 2023, 10: 958. doi: 10.3390/photonics10090958
    [11] Xie Yan, Wang Yingxin, Li Lianhe, et al. Realization of high depth resolution using two-beam self-mixing interferometry with a terahertz quantum cascade laser[J]. Optics Communications, 2023, 545: 129737. doi: 10.1016/j.optcom.2023.129737
    [12] Jha A, Cenkeramaddi L R, Royo S. Generalized multi-cavity laser self-mixing interferometry based on scattering theory[J]. Optics Express, 2023, 31(10): 16508-16522. doi: 10.1364/OE.484086
    [13] Liu Hui, You Yaqiang, Li Sijia, et al. Denoising of laser self-mixing interference by improved wavelet threshold for high performance of displacement reconstruction[J]. Photonics, 2023, 10: 943. doi: 10.3390/photonics10080943
    [14] 尤亚强, 李鑫涛, 刘晖, 等. 基于小波阈值滤波和S-G滤波相结合的激光自混合干涉微位移重构[J]. 强激光与粒子束, 2024, 36: 081002 doi: 10.11884/HPLPB202436.240125

    You Yaqiang, Li Xintao, Liu Hui, et al. Micro displacement reconstruction of laser self mixing interference based on wavelet threshold filtering and S-G filtering[J]. High Power Laser and Particle Beams, 2024, 36: 081002 doi: 10.11884/HPLPB202436.240125
    [15] 吴军, 陈杨, 赵君伟, 等. 基于激光自混合原理的涡轮叶片转速与叶尖间隙动态同步测量方法[J]. 仪器仪表学报, 2023, 44(11): 13-21 doi: 10.19650/j.cnki.cjsi.J2311652

    Wu Jun, Chen Yang, Zhao Junwei, et al. Dynamic synchronous measurement method of turbine blade speed and blade tip clearance based on laser self-mixing principle[J]. Chinese Journal of Scientific Instrument, 2023, 44(11): 13-21 doi: 10.19650/j.cnki.cjsi.J2311652
    [16] 韩玉祥, 丛至诚, 高丙坤, 等. 基于激光自混合干涉调频信号的位移测量实验[J]. 激光与红外, 2022, 52(5): 695-699

    Han Yuxiang, Cong Zhicheng, Gao Bingkun, et al. Displacement measurement experiment based on laser self mixing interference frequency modulation signal[J]. Laser & Infrared, 2022, 52(5): 695-699
    [17] Zhao Yan, Zhang Baofeng, Han Lianfu. Laser self-mixing interference displacement measurement based on VMD and phase unwrapping[J]. Optics Communications, 2020, 456: 124588. doi: 10.1016/j.optcom.2019.124588
    [18] 樊毓臻, 寇科, 王晛, 等. 线性调频激光自混合干涉双通道微位移测量方法研究[J]. 仪器仪表学报, 2023, 44(10): 22-29

    Fan Yuzhen, Kou Ke, Wang Xian, et al. Study on the dual-channel displacement measurement method using linearly tuned laser self-mixing interference[J]. Chinese Journal of Scientific Instrument, 2023, 44(10): 22-29
    [19] Huang Yidan, Lai Wenzong, Chen Enguo. Displacement sensing for laser self-mixing interferometry by amplitude modulation and integral reconstruction[J]. Sensors, 2024, 24: 3785. doi: 10.3390/s24123785
    [20] Awad A, Eldosoky M A A, Soliman A M, et al. Automatic diagnosis of hyperkinetic dysphonia from speech recordings based on deep learning approaches[J]. Engineering Research Express, 2025, 7: 035263. doi: 10.1088/2631-8695/adf9c3
    [21] Liu Ying, Xue Jiahao, Li Daxiang, et al. Image recognition based on lightweight convolutional neural network: recent advances[J]. Image and Vision Computing, 2024, 146: 105037. doi: 10.1016/j.imavis.2024.105037
    [22] Farajollahi A, Fakhrabadi M M S. Convolutional neural networks to predict dispersion surfaces-based properties of acoustic metamaterials with arbitrary-shaped unit cells[J]. Results in Engineering, 2025, 26: 104905. doi: 10.1016/j.rineng.2025.104905
    [23] Novac P E, Rodriguez L, Barland S. Integrating embedded neural networks and self-mixing interferometry for smart sensors design[C]//2024 IEEE Sensors Applications Symposium (SAS). 2024: 1-6.
    [24] An Lei, Liu Bin. Measuring parameters of laser self-mixing interferometry sensor based on back propagation neural network[J]. Optics Express, 2022, 30(11): 19134-19144. doi: 10.1364/OE.460625
    [25] Siddiqui A A, Zabit U, Bernal O D. Fringe detection and displacement sensing for variable optical feedback-based self-mixing interferometry by using deep neural networks[J]. Sensors, 2022, 22: 9831. doi: 10.3390/s22249831
    [26] Sawada A, Miyagawa T, Ebihara A, et al. Convolutional neural networks for time-dependent classification of variable-length time series[C]//Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN). 2022: 1-8.
    [27] Chagnon J, Hagenbuchner M, Tsoi A C, et al. On the effects of recursive convolutional layers in convolutional neural networks[J]. Neurocomputing, 2024, 591: 127767. doi: 10.1016/j.neucom.2024.127767
    [28] Walter B. Analysis of convolutional neural network image classifiers in a hierarchical max-pooling model with additional local pooling[J]. Journal of Statistical Planning and Inference, 2023, 224: 109-126. doi: 10.1016/j.jspi.2022.11.001
    [29] Liu Bin, Ruan Yuxi, Yu Yanguang. Determining system parameters and target movement directions in a laser self-mixing interferometry sensor[J]. Photonics, 2022, 9: 612. doi: 10.3390/photonics9090612
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-28
  • 修回日期:  2025-12-30
  • 录用日期:  2025-12-30
  • 网络出版日期:  2026-02-03

目录

    /

    返回文章
    返回